1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
//! A Non-empty growable vector.
//!
//! # Examples
//!
//! ```
//! use nonempty::NonEmpty;
//!
//! let mut l = NonEmpty { head: 42, tail: vec![36, 58] };
//!
//! assert_eq!(l.head, 42);
//!
//! l.push(9001);
//!
//! assert_eq!(l.last(), &9001);
//!
//! let v: Vec<i32> = l.into();
//! assert_eq!(v, vec![42, 36, 58, 9001]);
//! ```
#[cfg(feature = "serialize")]
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
use std::mem;
use std::{iter, vec};
#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
#[cfg_attr(
feature = "serialize",
serde(bound(serialize = "T: Clone + Serialize")),
serde(into = "Vec<T>", try_from = "Vec<T>")
)]
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct NonEmpty<T> {
pub head: T,
pub tail: Vec<T>,
}
impl<T> NonEmpty<T> {
/// Alias for [`NonEmpty::singleton`].
pub const fn new(e: T) -> Self {
Self::singleton(e)
}
/// Create a new non-empty list with an initial element.
pub const fn singleton(head: T) -> Self {
NonEmpty {
head,
tail: Vec::new(),
}
}
/// Always returns false.
pub const fn is_empty(&self) -> bool {
false
}
/// Get the first element. Never fails.
pub const fn first(&self) -> &T {
&self.head
}
/// Get the mutable reference to the first element. Never fails.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut non_empty = NonEmpty::new(42);
/// let head = non_empty.first_mut();
/// *head += 1;
/// assert_eq!(non_empty.first(), &43);
///
/// let mut non_empty = NonEmpty::from((1, vec![4, 2, 3]));
/// let head = non_empty.first_mut();
/// *head *= 42;
/// assert_eq!(non_empty.first(), &42);
/// ```
pub fn first_mut(&mut self) -> &mut T {
&mut self.head
}
/// Get the possibly-empty tail of the list.
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new(42);
/// assert_eq!(non_empty.tail(), &[]);
///
/// let non_empty = NonEmpty::from((1, vec![4, 2, 3]));
/// assert_eq!(non_empty.tail(), &[4, 2, 3]);
/// ```
pub fn tail(&self) -> &[T] {
&self.tail
}
/// Push an element to the end of the list.
pub fn push(&mut self, e: T) {
self.tail.push(e)
}
/// Pop an element from the end of the list.
pub fn pop(&mut self) -> Option<T> {
self.tail.pop()
}
/// Inserts an element at position index within the vector, shifting all elements after it to the right.
///
/// # Panics
///
/// Panics if index > len.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut non_empty = NonEmpty::from((1, vec![2, 3]));
/// non_empty.insert(1, 4);
/// assert_eq!(non_empty, NonEmpty::from((1, vec![4, 2, 3])));
/// non_empty.insert(4, 5);
/// assert_eq!(non_empty, NonEmpty::from((1, vec![4, 2, 3, 5])));
/// non_empty.insert(0, 42);
/// assert_eq!(non_empty, NonEmpty::from((42, vec![1, 4, 2, 3, 5])));
/// ```
pub fn insert(&mut self, index: usize, element: T) {
let len = self.len();
assert!(index <= len);
if index == 0 {
let head = mem::replace(&mut self.head, element);
self.tail.insert(0, head);
} else {
self.tail.insert(index - 1, element);
}
}
/// Get the length of the list.
pub fn len(&self) -> usize {
self.tail.len() + 1
}
/// Get the capacity of the list.
pub fn capacity(&self) -> usize {
self.tail.capacity() + 1
}
/// Get the last element. Never fails.
pub fn last(&self) -> &T {
match self.tail.last() {
None => &self.head,
Some(e) => e,
}
}
/// Get the last element mutably.
pub fn last_mut(&mut self) -> &mut T {
match self.tail.last_mut() {
None => &mut self.head,
Some(e) => e,
}
}
/// Check whether an element is contained in the list.
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut l = NonEmpty::from((42, vec![36, 58]));
///
/// assert!(l.contains(&42));
/// assert!(!l.contains(&101));
/// ```
pub fn contains(&self, x: &T) -> bool
where
T: PartialEq,
{
self.iter().any(|e| e == x)
}
/// Get an element by index.
pub fn get(&self, index: usize) -> Option<&T> {
if index == 0 {
Some(&self.head)
} else {
self.tail.get(index - 1)
}
}
/// Get an element by index, mutably.
pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
if index == 0 {
Some(&mut self.head)
} else {
self.tail.get_mut(index - 1)
}
}
/// Truncate the list to a certain size. Must be greater than `0`.
pub fn truncate(&mut self, len: usize) {
assert!(len >= 1);
self.tail.truncate(len - 1);
}
/// ```
/// use nonempty::NonEmpty;
///
/// let mut l = NonEmpty::from((42, vec![36, 58]));
///
/// let mut l_iter = l.iter();
///
/// assert_eq!(l_iter.next(), Some(&42));
/// assert_eq!(l_iter.next(), Some(&36));
/// assert_eq!(l_iter.next(), Some(&58));
/// assert_eq!(l_iter.next(), None);
/// ```
pub fn iter<'a>(&'a self) -> impl Iterator<Item = &T> + 'a {
iter::once(&self.head).chain(self.tail.iter())
}
/// ```
/// use nonempty::NonEmpty;
///
/// let mut l = NonEmpty::new(42);
/// l.push(36);
/// l.push(58);
///
/// for i in l.iter_mut() {
/// *i *= 10;
/// }
///
/// let mut l_iter = l.iter();
///
/// assert_eq!(l_iter.next(), Some(&420));
/// assert_eq!(l_iter.next(), Some(&360));
/// assert_eq!(l_iter.next(), Some(&580));
/// assert_eq!(l_iter.next(), None);
/// ```
pub fn iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &mut T> + 'a {
iter::once(&mut self.head).chain(self.tail.iter_mut())
}
/// Often we have a `Vec` (or slice `&[T]`) but want to ensure that it is `NonEmpty` before
/// proceeding with a computation. Using `from_slice` will give us a proof
/// that we have a `NonEmpty` in the `Some` branch, otherwise it allows
/// the caller to handle the `None` case.
///
/// # Example Use
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty_vec = NonEmpty::from_slice(&[1, 2, 3, 4, 5]);
/// assert_eq!(non_empty_vec, Some(NonEmpty::from((1, vec![2, 3, 4, 5]))));
///
/// let empty_vec: Option<NonEmpty<&u32>> = NonEmpty::from_slice(&[]);
/// assert!(empty_vec.is_none());
/// ```
pub fn from_slice(slice: &[T]) -> Option<NonEmpty<T>>
where
T: Clone,
{
slice.split_first().map(|(h, t)| NonEmpty {
head: h.clone(),
tail: t.into(),
})
}
/// Often we have a `Vec` (or slice `&[T]`) but want to ensure that it is `NonEmpty` before
/// proceeding with a computation. Using `from_vec` will give us a proof
/// that we have a `NonEmpty` in the `Some` branch, otherwise it allows
/// the caller to handle the `None` case.
///
/// This version will consume the `Vec` you pass in. If you would rather pass the data as a
/// slice then use `NonEmpty::from_slice`.
///
/// # Example Use
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty_vec = NonEmpty::from_vec(vec![1, 2, 3, 4, 5]);
/// assert_eq!(non_empty_vec, Some(NonEmpty::from((1, vec![2, 3, 4, 5]))));
///
/// let empty_vec: Option<NonEmpty<&u32>> = NonEmpty::from_vec(vec![]);
/// assert!(empty_vec.is_none());
/// ```
pub fn from_vec(mut vec: Vec<T>) -> Option<NonEmpty<T>> {
if vec.is_empty() {
None
} else {
let head = vec.remove(0);
Some(NonEmpty { head, tail: vec })
}
}
/// Deconstruct a `NonEmpty` into its head and tail.
/// This operation never fails since we are guranteed
/// to have a head element.
///
/// # Example Use
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// // Guaranteed to have the head and we also get the tail.
/// assert_eq!(non_empty.split_first(), (&1, &[2, 3, 4, 5][..]));
///
/// let non_empty = NonEmpty::new(1);
///
/// // Guaranteed to have the head element.
/// assert_eq!(non_empty.split_first(), (&1, &[][..]));
/// ```
pub fn split_first(&self) -> (&T, &[T]) {
(&self.head, &self.tail)
}
/// Deconstruct a `NonEmpty` into its first, last, and
/// middle elements, in that order.
///
/// If there is only one element then first == last.
///
/// # Example Use
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// // Guaranteed to have the last element and the elements
/// // preceding it.
/// assert_eq!(non_empty.split(), (&1, &[2, 3, 4][..], &5));
///
/// let non_empty = NonEmpty::new(1);
///
/// // Guaranteed to have the last element.
/// assert_eq!(non_empty.split(), (&1, &[][..], &1));
/// ```
pub fn split(&self) -> (&T, &[T], &T) {
match self.tail.split_last() {
None => (&self.head, &[], &self.head),
Some((last, middle)) => (&self.head, middle, last),
}
}
/// Append a `Vec` to the tail of the `NonEmpty`.
///
/// # Example Use
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut non_empty = NonEmpty::new(1);
/// let mut vec = vec![2, 3, 4, 5];
/// non_empty.append(&mut vec);
///
/// let mut expected = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// assert_eq!(non_empty, expected);
/// ```
pub fn append(&mut self, other: &mut Vec<T>) {
self.tail.append(other)
}
/// A structure preserving `map`. This is useful for when
/// we wish to keep the `NonEmpty` structure guaranteeing
/// that there is at least one element. Otherwise, we can
/// use `nonempty.iter().map(f)`.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// let squares = non_empty.map(|i| i * i);
///
/// let expected = NonEmpty::from((1, vec![4, 9, 16, 25]));
///
/// assert_eq!(squares, expected);
/// ```
pub fn map<U, F>(self, mut f: F) -> NonEmpty<U>
where
F: FnMut(T) -> U,
{
NonEmpty {
head: f(self.head),
tail: self.tail.into_iter().map(f).collect(),
}
}
/// When we have a function that goes from some `T` to a `NonEmpty<U>`,
/// we may want to apply it to a `NonEmpty<T>` but keep the structure flat.
/// This is where `flat_map` shines.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// let windows = non_empty.flat_map(|i| {
/// let mut next = NonEmpty::new(i + 5);
/// next.push(i + 6);
/// next
/// });
///
/// let expected = NonEmpty::from((6, vec![7, 7, 8, 8, 9, 9, 10, 10, 11]));
///
/// assert_eq!(windows, expected);
/// ```
pub fn flat_map<U, F>(self, mut f: F) -> NonEmpty<U>
where
F: FnMut(T) -> NonEmpty<U>,
{
let mut heads = f(self.head);
let mut tails = self
.tail
.into_iter()
.flat_map(|t| f(t).into_iter())
.collect();
heads.append(&mut tails);
heads
}
/// Flatten nested `NonEmpty`s into a single one.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((
/// NonEmpty::from((1, vec![2, 3])),
/// vec![NonEmpty::from((4, vec![5]))],
/// ));
///
/// let expected = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// assert_eq!(NonEmpty::flatten(non_empty), expected);
/// ```
pub fn flatten(full: NonEmpty<NonEmpty<T>>) -> Self {
full.flat_map(|n| n)
}
/// Binary searches this sorted non-empty vector for a given element.
///
/// If the value is found then Result::Ok is returned, containing the index of the matching element.
/// If there are multiple matches, then any one of the matches could be returned.
///
/// If the value is not found then Result::Err is returned, containing the index where a
/// matching element could be inserted while maintaining sorted order.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
/// assert_eq!(non_empty.binary_search(&0), Ok(0));
/// assert_eq!(non_empty.binary_search(&13), Ok(9));
/// assert_eq!(non_empty.binary_search(&4), Err(7));
/// assert_eq!(non_empty.binary_search(&100), Err(13));
/// let r = non_empty.binary_search(&1);
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
///
/// If you want to insert an item to a sorted non-empty vector, while maintaining sort order:
///
/// ```
/// use nonempty::NonEmpty;
///
/// let mut non_empty = NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
/// let num = 42;
/// let idx = non_empty.binary_search(&num).unwrap_or_else(|x| x);
/// non_empty.insert(idx, num);
/// assert_eq!(non_empty, NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55])));
/// ```
pub fn binary_search(&self, x: &T) -> Result<usize, usize>
where
T: Ord,
{
self.binary_search_by(|p| p.cmp(x))
}
/// Binary searches this sorted non-empty with a comparator function.
///
/// The comparator function should implement an order consistent with the sort order of the underlying slice,
/// returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.
///
/// If the value is found then Result::Ok is returned, containing the index of the matching element.
/// If there are multiple matches, then any one of the matches could be returned.
/// If the value is not found then Result::Err is returned, containing the index where a matching element could be
/// inserted while maintaining sorted order.
///
/// # Examples
///
/// Looks up a series of four elements. The first is found, with a uniquely determined
/// position; the second and third are not found; the fourth could match any position in [1,4].
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
/// let seek = 0;
/// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Ok(0));
/// let seek = 13;
/// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
/// let seek = 4;
/// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
/// let seek = 100;
/// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
/// let seek = 1;
/// let r = non_empty.binary_search_by(|probe| probe.cmp(&seek));
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> Ordering,
{
match f(&self.head) {
Ordering::Equal => Ok(0),
Ordering::Greater => Err(0),
Ordering::Less => self
.tail
.binary_search_by(f)
.map(|index| index + 1)
.map_err(|index| index + 1),
}
}
/// Binary searches this sorted non-empty vector with a key extraction function.
///
/// Assumes that the vector is sorted by the key.
///
/// If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches,
/// then any one of the matches could be returned. If the value is not found then Result::Err is returned,
/// containing the index where a matching element could be inserted while maintaining sorted order.
///
/// # Examples
///
/// Looks up a series of four elements in a non-empty vector of pairs sorted by their second elements.
/// The first is found, with a uniquely determined position; the second and third are not found;
/// the fourth could match any position in [1, 4].
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((
/// (0, 0),
/// vec![(2, 1), (4, 1), (5, 1), (3, 1),
/// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
/// (1, 21), (2, 34), (4, 55)]
/// ));
///
/// assert_eq!(non_empty.binary_search_by_key(&0, |&(a,b)| b), Ok(0));
/// assert_eq!(non_empty.binary_search_by_key(&13, |&(a,b)| b), Ok(9));
/// assert_eq!(non_empty.binary_search_by_key(&4, |&(a,b)| b), Err(7));
/// assert_eq!(non_empty.binary_search_by_key(&100, |&(a,b)| b), Err(13));
/// let r = non_empty.binary_search_by_key(&1, |&(a,b)| b);
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
where
B: Ord,
F: FnMut(&'a T) -> B,
{
self.binary_search_by(|k| f(k).cmp(b))
}
/// Returns the maximum element in the non-empty vector.
///
/// This will return the first item in the vector if the tail is empty.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new(42);
/// assert_eq!(non_empty.maximum(), &42);
///
/// let non_empty = NonEmpty::from((1, vec![-34, 42, 76, 4, 5]));
/// assert_eq!(non_empty.maximum(), &76);
/// ```
pub fn maximum(&self) -> &T
where
T: Ord,
{
self.maximum_by(|i, j| i.cmp(j))
}
/// Returns the minimum element in the non-empty vector.
///
/// This will return the first item in the vector if the tail is empty.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new(42);
/// assert_eq!(non_empty.minimum(), &42);
///
/// let non_empty = NonEmpty::from((1, vec![-34, 42, 76, 4, 5]));
/// assert_eq!(non_empty.minimum(), &-34);
/// ```
pub fn minimum(&self) -> &T
where
T: Ord,
{
self.minimum_by(|i, j| i.cmp(j))
}
/// Returns the element that gives the maximum value with respect to the specified comparison function.
///
/// This will return the first item in the vector if the tail is empty.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new((0, 42));
/// assert_eq!(non_empty.maximum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 42));
///
/// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
/// assert_eq!(non_empty.maximum_by(|(k, _), (l, _)| k.cmp(l)), &(4, 42));
/// ```
pub fn maximum_by<F>(&self, compare: F) -> &T
where
F: Fn(&T, &T) -> Ordering,
{
let mut max = &self.head;
for i in self.tail.iter() {
max = match compare(&max, &i) {
Ordering::Equal => max,
Ordering::Less => &i,
Ordering::Greater => max,
};
}
max
}
/// Returns the element that gives the minimum value with respect to the specified comparison function.
///
/// This will return the first item in the vector if the tail is empty.
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new((0, 42));
/// assert_eq!(non_empty.minimum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 42));
///
/// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
/// assert_eq!(non_empty.minimum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 76));
/// ```
pub fn minimum_by<F>(&self, compare: F) -> &T
where
F: Fn(&T, &T) -> Ordering,
{
self.maximum_by(|a, b| compare(a, b).reverse())
}
/// Returns the element that gives the maximum value with respect to the specified function.
///
/// This will return the first item in the vector if the tail is empty.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new((0, 42));
/// assert_eq!(non_empty.maximum_by_key(|(k, _)| k), &(0, 42));
///
/// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
/// assert_eq!(non_empty.maximum_by_key(|(k, _)| k), &(4, 42));
/// ```
pub fn maximum_by_key<U, F>(&self, f: F) -> &T
where
U: Ord,
F: Fn(&T) -> &U,
{
self.maximum_by(|i, j| f(i).cmp(f(j)))
}
/// Returns the element that gives the minimum value with respect to the specified function.
///
/// This will return the first item in the vector if the tail is empty.
///
/// # Examples
///
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::new((0, 42));
/// assert_eq!(non_empty.minimum_by_key(|(k, _)| k), &(0, 42));
///
/// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
/// assert_eq!(non_empty.minimum_by_key(|(k, _)| k), &(0, 76));
/// ```
pub fn minimum_by_key<U, F>(&self, f: F) -> &T
where
U: Ord,
F: Fn(&T) -> &U,
{
self.minimum_by(|i, j| f(i).cmp(f(j)))
}
}
impl<T> From<NonEmpty<T>> for Vec<T> {
/// Turns a non-empty list into a Vec.
fn from(nonempty: NonEmpty<T>) -> Vec<T> {
iter::once(nonempty.head).chain(nonempty.tail).collect()
}
}
impl<T> From<NonEmpty<T>> for (T, Vec<T>) {
/// Turns a non-empty list into a Vec.
fn from(nonempty: NonEmpty<T>) -> (T, Vec<T>) {
(nonempty.head, nonempty.tail)
}
}
impl<T> From<(T, Vec<T>)> for NonEmpty<T> {
/// Turns a pair of an element and a Vec into
/// a NonEmpty.
fn from((head, tail): (T, Vec<T>)) -> Self {
NonEmpty { head, tail }
}
}
impl<T> IntoIterator for NonEmpty<T> {
type Item = T;
type IntoIter = iter::Chain<iter::Once<T>, vec::IntoIter<Self::Item>>;
fn into_iter(self) -> Self::IntoIter {
iter::once(self.head).chain(self.tail)
}
}
impl<'a, T> IntoIterator for &'a NonEmpty<T> {
type Item = &'a T;
type IntoIter = iter::Chain<iter::Once<&'a T>, std::slice::Iter<'a, T>>;
fn into_iter(self) -> Self::IntoIter {
iter::once(&self.head).chain(self.tail.iter())
}
}
impl<T> std::ops::Index<usize> for NonEmpty<T> {
type Output = T;
/// ```
/// use nonempty::NonEmpty;
///
/// let non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
///
/// assert_eq!(non_empty[0], 1);
/// assert_eq!(non_empty[1], 2);
/// assert_eq!(non_empty[3], 4);
/// ```
fn index(&self, index: usize) -> &T {
if index > 0 {
&self.tail[index - 1]
} else {
&self.head
}
}
}
impl<T> std::ops::IndexMut<usize> for NonEmpty<T> {
fn index_mut(&mut self, index: usize) -> &mut T {
if index > 0 {
&mut self.tail[index - 1]
} else {
&mut self.head
}
}
}
#[cfg(feature = "serialize")]
pub mod serialize {
use std::{convert::TryFrom, fmt};
use super::NonEmpty;
#[derive(Debug)]
pub enum Error {
Empty,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Empty => f.write_str(
"the vector provided was empty, NonEmpty needs at least one element",
),
}
}
}
impl<T> TryFrom<Vec<T>> for NonEmpty<T> {
type Error = Error;
fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
NonEmpty::from_vec(vec).ok_or(Error::Empty)
}
}
}
#[cfg(test)]
mod tests {
use crate::NonEmpty;
#[test]
fn test_from_conversion() {
let result = NonEmpty::from((1, vec![2, 3, 4, 5]));
let expected = NonEmpty {
head: 1,
tail: vec![2, 3, 4, 5],
};
assert_eq!(result, expected);
}
#[test]
fn test_into_iter() {
let nonempty = NonEmpty::from((0, vec![1, 2, 3]));
for (i, n) in nonempty.into_iter().enumerate() {
assert_eq!(i as i32, n);
}
}
#[test]
fn test_iter_syntax() {
let nonempty = NonEmpty::from((0, vec![1, 2, 3]));
for n in &nonempty {
assert_eq!(*n, *n); // Prove that we're dealing with references.
}
for _ in nonempty {}
}
#[test]
fn test_mutate_head() {
let mut non_empty = NonEmpty::new(42);
non_empty.head += 1;
assert_eq!(non_empty.head, 43);
let mut non_empty = NonEmpty::from((1, vec![4, 2, 3]));
non_empty.head *= 42;
assert_eq!(non_empty.head, 42);
}
#[cfg(feature = "serialize")]
mod serialize {
use crate::NonEmpty;
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub struct SimpleSerializable(pub i32);
#[test]
fn test_simple_round_trip() -> Result<(), Box<dyn std::error::Error>> {
// Given
let mut non_empty = NonEmpty::new(SimpleSerializable(42));
non_empty.push(SimpleSerializable(777));
let expected_value = non_empty.clone();
// When
let res = serde_json::from_str::<'_, NonEmpty<SimpleSerializable>>(
&serde_json::to_string(&non_empty)?,
)?;
// Then
assert_eq!(res, expected_value);
Ok(())
}
}
}