1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::mem;

use crate::crypto::hash;
use crate::msgs::codec::Codec;
use crate::msgs::enums::HashAlgorithm;
use crate::msgs::handshake::HandshakeMessagePayload;
use crate::msgs::message::{Message, MessagePayload};

/// Early stage buffering of handshake payloads.
///
/// Before we know the hash algorithm to use to verify the handshake, we just buffer the messages.
/// During the handshake, we may restart the transcript due to a HelloRetryRequest, reverting
/// from the `HandshakeHash` to a `HandshakeHashBuffer` again.
#[derive(Clone)]
pub(crate) struct HandshakeHashBuffer {
    buffer: Vec<u8>,
    client_auth_enabled: bool,
}

impl HandshakeHashBuffer {
    pub(crate) fn new() -> Self {
        Self {
            buffer: Vec::new(),
            client_auth_enabled: false,
        }
    }

    /// We might be doing client auth, so need to keep a full
    /// log of the handshake.
    pub(crate) fn set_client_auth_enabled(&mut self) {
        self.client_auth_enabled = true;
    }

    /// Hash/buffer a handshake message.
    pub(crate) fn add_message(&mut self, m: &Message<'_>) {
        if let MessagePayload::Handshake { encoded, .. } = &m.payload {
            self.buffer
                .extend_from_slice(encoded.bytes());
        }
    }

    /// Hash or buffer a byte slice.
    #[cfg(all(test, any(feature = "ring", feature = "aws_lc_rs")))]
    fn update_raw(&mut self, buf: &[u8]) {
        self.buffer.extend_from_slice(buf);
    }

    /// Get the hash value if we were to hash `extra` too.
    pub(crate) fn hash_given(
        &self,
        provider: &'static dyn hash::Hash,
        extra: &[u8],
    ) -> hash::Output {
        let mut ctx = provider.start();
        ctx.update(&self.buffer);
        ctx.update(extra);
        ctx.finish()
    }

    /// We now know what hash function the verify_data will use.
    pub(crate) fn start_hash(self, provider: &'static dyn hash::Hash) -> HandshakeHash {
        let mut ctx = provider.start();
        ctx.update(&self.buffer);
        HandshakeHash {
            provider,
            ctx,
            client_auth: match self.client_auth_enabled {
                true => Some(self.buffer),
                false => None,
            },
        }
    }
}

/// This deals with keeping a running hash of the handshake
/// payloads.  This is computed by buffering initially.  Once
/// we know what hash function we need to use we switch to
/// incremental hashing.
///
/// For client auth, we also need to buffer all the messages.
/// This is disabled in cases where client auth is not possible.
pub(crate) struct HandshakeHash {
    provider: &'static dyn hash::Hash,
    ctx: Box<dyn hash::Context>,

    /// buffer for client-auth.
    client_auth: Option<Vec<u8>>,
}

impl HandshakeHash {
    /// We decided not to do client auth after all, so discard
    /// the transcript.
    pub(crate) fn abandon_client_auth(&mut self) {
        self.client_auth = None;
    }

    /// Hash/buffer a handshake message.
    pub(crate) fn add_message(&mut self, m: &Message<'_>) -> &mut Self {
        if let MessagePayload::Handshake { encoded, .. } = &m.payload {
            self.update_raw(encoded.bytes());
        }
        self
    }

    /// Hash or buffer a byte slice.
    fn update_raw(&mut self, buf: &[u8]) -> &mut Self {
        self.ctx.update(buf);

        if let Some(buffer) = &mut self.client_auth {
            buffer.extend_from_slice(buf);
        }

        self
    }

    /// Get the hash value if we were to hash `extra` too,
    /// using hash function `hash`.
    pub(crate) fn hash_given(&self, extra: &[u8]) -> hash::Output {
        let mut ctx = self.ctx.fork();
        ctx.update(extra);
        ctx.finish()
    }

    pub(crate) fn into_hrr_buffer(self) -> HandshakeHashBuffer {
        let old_hash = self.ctx.finish();
        let old_handshake_hash_msg =
            HandshakeMessagePayload::build_handshake_hash(old_hash.as_ref());

        HandshakeHashBuffer {
            client_auth_enabled: self.client_auth.is_some(),
            buffer: old_handshake_hash_msg.get_encoding(),
        }
    }

    /// Take the current hash value, and encapsulate it in a
    /// 'handshake_hash' handshake message.  Start this hash
    /// again, with that message at the front.
    pub(crate) fn rollup_for_hrr(&mut self) {
        let ctx = &mut self.ctx;

        let old_ctx = mem::replace(ctx, self.provider.start());
        let old_hash = old_ctx.finish();
        let old_handshake_hash_msg =
            HandshakeMessagePayload::build_handshake_hash(old_hash.as_ref());

        self.update_raw(&old_handshake_hash_msg.get_encoding());
    }

    /// Get the current hash value.
    pub(crate) fn current_hash(&self) -> hash::Output {
        self.ctx.fork_finish()
    }

    /// Takes this object's buffer containing all handshake messages
    /// so far.  This method only works once; it resets the buffer
    /// to empty.
    #[cfg(feature = "tls12")]
    pub(crate) fn take_handshake_buf(&mut self) -> Option<Vec<u8>> {
        self.client_auth.take()
    }

    /// The hashing algorithm
    pub(crate) fn algorithm(&self) -> HashAlgorithm {
        self.provider.algorithm()
    }
}

impl Clone for HandshakeHash {
    fn clone(&self) -> Self {
        Self {
            provider: self.provider,
            ctx: self.ctx.fork(),
            client_auth: self.client_auth.clone(),
        }
    }
}

test_for_each_provider! {
    use super::HandshakeHashBuffer;
    use provider::hash::SHA256;

    #[test]
    fn hashes_correctly() {
        let mut hhb = HandshakeHashBuffer::new();
        hhb.update_raw(b"hello");
        assert_eq!(hhb.buffer.len(), 5);
        let mut hh = hhb.start_hash(&SHA256);
        assert!(hh.client_auth.is_none());
        hh.update_raw(b"world");
        let h = hh.current_hash();
        let h = h.as_ref();
        assert_eq!(h[0], 0x93);
        assert_eq!(h[1], 0x6a);
        assert_eq!(h[2], 0x18);
        assert_eq!(h[3], 0x5c);
    }

    #[cfg(feature = "tls12")]
    #[test]
    fn buffers_correctly() {
        let mut hhb = HandshakeHashBuffer::new();
        hhb.set_client_auth_enabled();
        hhb.update_raw(b"hello");
        assert_eq!(hhb.buffer.len(), 5);
        let mut hh = hhb.start_hash(&SHA256);
        assert_eq!(
            hh.client_auth
                .as_ref()
                .map(|buf| buf.len()),
            Some(5)
        );
        hh.update_raw(b"world");
        assert_eq!(
            hh.client_auth
                .as_ref()
                .map(|buf| buf.len()),
            Some(10)
        );
        let h = hh.current_hash();
        let h = h.as_ref();
        assert_eq!(h[0], 0x93);
        assert_eq!(h[1], 0x6a);
        assert_eq!(h[2], 0x18);
        assert_eq!(h[3], 0x5c);
        let buf = hh.take_handshake_buf();
        assert_eq!(Some(b"helloworld".to_vec()), buf);
    }

    #[test]
    fn abandon() {
        let mut hhb = HandshakeHashBuffer::new();
        hhb.set_client_auth_enabled();
        hhb.update_raw(b"hello");
        assert_eq!(hhb.buffer.len(), 5);
        let mut hh = hhb.start_hash(&SHA256);
        assert_eq!(
            hh.client_auth
                .as_ref()
                .map(|buf| buf.len()),
            Some(5)
        );
        hh.abandon_client_auth();
        assert_eq!(hh.client_auth, None);
        hh.update_raw(b"world");
        assert_eq!(hh.client_auth, None);
        let h = hh.current_hash();
        let h = h.as_ref();
        assert_eq!(h[0], 0x93);
        assert_eq!(h[1], 0x6a);
        assert_eq!(h[2], 0x18);
        assert_eq!(h[3], 0x5c);
    }

    #[test]
    fn clones_correctly() {
        let mut hhb = HandshakeHashBuffer::new();
        hhb.set_client_auth_enabled();
        hhb.update_raw(b"hello");
        assert_eq!(hhb.buffer.len(), 5);

        // Cloning the HHB should result in the same buffer and client auth state.
        let mut hhb_prime = hhb.clone();
        assert_eq!(hhb_prime.buffer, hhb.buffer);
        assert!(hhb_prime.client_auth_enabled);

        // Updating the HHB clone shouldn't affect the original.
        hhb_prime.update_raw(b"world");
        assert_eq!(hhb_prime.buffer.len(), 10);
        assert_ne!(hhb.buffer, hhb_prime.buffer);

        let hh = hhb.start_hash(&SHA256);
        let hh_hash = hh.current_hash();
        let hh_hash = hh_hash.as_ref();

        // Cloning the HH should result in the same current hash.
        let mut hh_prime = hh.clone();
        let hh_prime_hash = hh_prime.current_hash();
        let hh_prime_hash = hh_prime_hash.as_ref();
        assert_eq!(hh_hash, hh_prime_hash);

        // Updating the HH clone shouldn't affect the original.
        hh_prime.update_raw(b"goodbye");
        assert_eq!(hh.current_hash().as_ref(), hh_hash);
        assert_ne!(hh_prime.current_hash().as_ref(), hh_hash);
    }
}