1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
//! B+-tree node pool.
#[cfg(test)]
use super::Comparator;
use super::{Forest, Node, NodeData};
use crate::entity::PrimaryMap;
#[cfg(test)]
use core::fmt;
use core::ops::{Index, IndexMut};
/// A pool of nodes, including a free list.
pub(super) struct NodePool<F: Forest> {
nodes: PrimaryMap<Node, NodeData<F>>,
freelist: Option<Node>,
}
impl<F: Forest> NodePool<F> {
/// Allocate a new empty pool of nodes.
pub fn new() -> Self {
Self {
nodes: PrimaryMap::new(),
freelist: None,
}
}
/// Free all nodes.
pub fn clear(&mut self) {
self.nodes.clear();
self.freelist = None;
}
/// Allocate a new node containing `data`.
pub fn alloc_node(&mut self, data: NodeData<F>) -> Node {
debug_assert!(!data.is_free(), "can't allocate free node");
match self.freelist {
Some(node) => {
// Remove this node from the free list.
match self.nodes[node] {
NodeData::Free { next } => self.freelist = next,
_ => panic!("Invalid {} on free list", node),
}
self.nodes[node] = data;
node
}
None => {
// The free list is empty. Allocate a new node.
self.nodes.push(data)
}
}
}
/// Free a node.
pub fn free_node(&mut self, node: Node) {
// Quick check for a double free.
debug_assert!(!self.nodes[node].is_free(), "{} is already free", node);
self.nodes[node] = NodeData::Free {
next: self.freelist,
};
self.freelist = Some(node);
}
/// Free the entire tree rooted at `node`.
pub fn free_tree(&mut self, node: Node) {
if let NodeData::Inner { size, tree, .. } = self[node] {
// Note that we have to capture `tree` by value to avoid borrow checker trouble.
#[cfg_attr(feature = "cargo-clippy", allow(clippy::needless_range_loop))]
for i in 0..usize::from(size + 1) {
// Recursively free sub-trees. This recursion can never be deeper than `MAX_PATH`,
// and since most trees have less than a handful of nodes, it is worthwhile to
// avoid the heap allocation for an iterative tree traversal.
self.free_tree(tree[i]);
}
}
self.free_node(node);
}
}
#[cfg(test)]
impl<F: Forest> NodePool<F> {
/// Verify the consistency of the tree rooted at `node`.
pub fn verify_tree<C: Comparator<F::Key>>(&self, node: Node, comp: &C)
where
NodeData<F>: fmt::Display,
F::Key: fmt::Display,
{
use crate::entity::EntitySet;
use alloc::vec::Vec;
use core::borrow::Borrow;
use core::cmp::Ordering;
// The root node can't be an inner node with just a single sub-tree. It should have been
// pruned.
if let NodeData::Inner { size, .. } = self[node] {
assert!(size > 0, "Root must have more than one sub-tree");
}
let mut done = match self[node] {
NodeData::Inner { size, .. } | NodeData::Leaf { size, .. } => {
EntitySet::with_capacity(size.into())
}
_ => EntitySet::new(),
};
let mut todo = Vec::new();
// Todo-list entries are:
// 1. Optional LHS key which must be <= all node entries.
// 2. The node reference.
// 3. Optional RHS key which must be > all node entries.
todo.push((None, node, None));
while let Some((lkey, node, rkey)) = todo.pop() {
assert!(done.insert(node), "Node appears more than once in tree");
let mut lower = lkey;
match self[node] {
NodeData::Inner { size, keys, tree } => {
let size = size as usize;
let capacity = tree.len();
let keys = &keys[0..size];
// Verify occupancy.
// Right-most nodes can be small, but others must be at least half full.
assert!(
rkey.is_none() || (size + 1) * 2 >= capacity,
"Only {}/{} entries in {}:{}, upper={}",
size + 1,
capacity,
node,
self[node],
rkey.unwrap()
);
// Queue up the sub-trees, checking for duplicates.
for i in 0..size + 1 {
// Get an upper bound for node[i].
let upper = keys.get(i).cloned().or(rkey);
// Check that keys are strictly monotonic.
if let (Some(a), Some(b)) = (lower, upper) {
assert_eq!(
comp.cmp(a, b),
Ordering::Less,
"Key order {} < {} failed in {}: {}",
a,
b,
node,
self[node]
);
}
// Queue up the sub-tree.
todo.push((lower, tree[i], upper));
// Set a lower bound for the next tree.
lower = upper;
}
}
NodeData::Leaf { size, keys, .. } => {
let size = size as usize;
let capacity = keys.borrow().len();
let keys = &keys.borrow()[0..size];
// Verify occupancy.
// Right-most nodes can be small, but others must be at least half full.
assert!(size > 0, "Leaf {} is empty", node);
assert!(
rkey.is_none() || size * 2 >= capacity,
"Only {}/{} entries in {}:{}, upper={}",
size,
capacity,
node,
self[node],
rkey.unwrap()
);
for i in 0..size + 1 {
let upper = keys.get(i).cloned().or(rkey);
// Check that keys are strictly monotonic.
if let (Some(a), Some(b)) = (lower, upper) {
let wanted = if i == 0 {
Ordering::Equal
} else {
Ordering::Less
};
assert_eq!(
comp.cmp(a, b),
wanted,
"Key order for {} - {} failed in {}: {}",
a,
b,
node,
self[node]
);
}
// Set a lower bound for the next key.
lower = upper;
}
}
NodeData::Free { .. } => panic!("Free {} reached", node),
}
}
}
}
impl<F: Forest> Index<Node> for NodePool<F> {
type Output = NodeData<F>;
fn index(&self, index: Node) -> &Self::Output {
self.nodes.index(index)
}
}
impl<F: Forest> IndexMut<Node> for NodePool<F> {
fn index_mut(&mut self, index: Node) -> &mut Self::Output {
self.nodes.index_mut(index)
}
}