1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
//! Interfaces for hashing multiple inputs at once, using SIMD more
//! efficiently.
//!
//! The throughput of these interfaces is comparable to BLAKE2bp, about twice
//! the throughput of regular BLAKE2b when AVX2 is available.
//!
//! These interfaces can accept any number of inputs, and the implementation
//! does its best to parallelize them. In general, the more inputs you can pass
//! in at once the better. If you need to batch your inputs in smaller groups,
//! see the [`degree`](fn.degree.html) function for a good batch size.
//!
//! The implementation keeps working in parallel even when inputs are of
//! different lengths, by managing a working set of jobs whose input isn't yet
//! exhausted. However, if one or two inputs are much longer than the others,
//! and they're encountered only at the end, there might not be any remaining
//! work to parallelize them with. In this case, sorting the inputs
//! longest-first can improve parallelism.
//!
//! # Example
//!
//! ```
//! use blake2b_simd::{blake2b, State, many::update_many};
//!
//! let mut states = [
//! State::new(),
//! State::new(),
//! State::new(),
//! State::new(),
//! ];
//!
//! let inputs = [
//! &b"foo"[..],
//! &b"bar"[..],
//! &b"baz"[..],
//! &b"bing"[..],
//! ];
//!
//! update_many(states.iter_mut().zip(inputs.iter()));
//!
//! for (state, input) in states.iter_mut().zip(inputs.iter()) {
//! assert_eq!(blake2b(input), state.finalize());
//! }
//! ```
use crate::guts::{self, Finalize, Implementation, Job, LastNode, Stride};
use crate::state_words_to_bytes;
use crate::Count;
use crate::Hash;
use crate::Params;
use crate::State;
use crate::Word;
use crate::BLOCKBYTES;
use arrayvec::ArrayVec;
use core::fmt;
/// The largest possible value of [`degree`](fn.degree.html) on the target
/// platform.
///
/// Note that this constant reflects the parallelism degree supported by this
/// crate, so it will change over time as support is added or removed. For
/// example, when Rust stabilizes AVX-512 support and this crate adds an
/// AVX-512 implementation, this constant will double on x86 targets. If that
/// implementation is an optional feature (e.g. because it's nightly-only), the
/// value of this constant will depend on that optional feature also.
pub const MAX_DEGREE: usize = guts::MAX_DEGREE;
/// The parallelism degree of the implementation, detected at runtime. If you
/// hash your inputs in small batches, making the batch size a multiple of
/// `degree` will generally give good performance.
///
/// For example, an x86 processor that supports AVX2 can compute four BLAKE2b
/// hashes in parallel, so `degree` returns 4 on that machine. If you call
/// [`hash_many`] with only three inputs, that's not enough to use the AVX2
/// implementation, and your average throughput will be lower. Likewise if you
/// call it with five inputs of equal length, the first four will be hashed in
/// parallel with AVX2, but the last one will have to be hashed by itself, and
/// again your average throughput will be lower.
///
/// As noted in the module level docs, performance is more complicated if your
/// inputs are of different lengths. When parallelizing long and short inputs
/// together, the longer ones will have bytes left over, and the implementation
/// will try to parallelize those leftover bytes with subsequent inputs. The
/// more inputs available in that case, the more the implementation will be
/// able to parallelize.
///
/// If you need a constant batch size, for example to collect inputs in an
/// array, see [`MAX_DEGREE`].
///
/// [`hash_many`]: fn.hash_many.html
/// [`MAX_DEGREE`]: constant.MAX_DEGREE.html
pub fn degree() -> usize {
guts::Implementation::detect().degree()
}
type JobsVec<'a, 'b> = ArrayVec<Job<'a, 'b>, { guts::MAX_DEGREE }>;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[inline(always)]
fn fill_jobs_vec<'a, 'b>(
jobs_iter: &mut impl Iterator<Item = Job<'a, 'b>>,
vec: &mut JobsVec<'a, 'b>,
target_len: usize,
) {
while vec.len() < target_len {
if let Some(job) = jobs_iter.next() {
vec.push(job);
} else {
break;
}
}
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[inline(always)]
fn evict_finished<'a, 'b>(vec: &mut JobsVec<'a, 'b>, num_jobs: usize) {
// Iterate backwards so that removal doesn't cause an out-of-bounds panic.
for i in (0..num_jobs).rev() {
// Note that is_empty() is only valid because we know all these jobs
// have been run at least once. Otherwise we could confuse the empty
// input for a finished job, which would be incorrect.
//
// Avoid a panic branch here in release mode.
debug_assert!(vec.len() > i);
if vec.len() > i && vec[i].input.is_empty() {
// Note that calling pop_at() repeatedly has some overhead, because
// later elements need to be shifted up. However, the JobsVec is
// small, and this approach guarantees that jobs are encountered in
// order.
vec.pop_at(i);
}
}
}
pub(crate) fn compress_many<'a, 'b, I>(
jobs: I,
imp: Implementation,
finalize: Finalize,
stride: Stride,
) where
I: IntoIterator<Item = Job<'a, 'b>>,
{
// Fuse is important for correctness, since each of these blocks tries to
// advance the iterator, even if a previous block emptied it.
#[allow(unused_mut)]
let mut jobs_iter = jobs.into_iter().fuse();
#[allow(unused_mut)]
let mut jobs_vec = JobsVec::new();
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
if imp.degree() >= 4 {
loop {
fill_jobs_vec(&mut jobs_iter, &mut jobs_vec, 4);
if jobs_vec.len() < 4 {
break;
}
let jobs_array = arrayref::array_mut_ref!(jobs_vec, 0, 4);
imp.compress4_loop(jobs_array, finalize, stride);
evict_finished(&mut jobs_vec, 4);
}
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
if imp.degree() >= 2 {
loop {
fill_jobs_vec(&mut jobs_iter, &mut jobs_vec, 2);
if jobs_vec.len() < 2 {
break;
}
let jobs_array = arrayref::array_mut_ref!(jobs_vec, 0, 2);
imp.compress2_loop(jobs_array, finalize, stride);
evict_finished(&mut jobs_vec, 2);
}
}
for job in jobs_vec.into_iter().chain(jobs_iter) {
let Job {
input,
words,
count,
last_node,
} = job;
imp.compress1_loop(input, words, count, last_node, finalize, stride);
}
}
/// Update any number of `State` objects at once.
///
/// # Example
///
/// ```
/// use blake2b_simd::{blake2b, State, many::update_many};
///
/// let mut states = [
/// State::new(),
/// State::new(),
/// State::new(),
/// State::new(),
/// ];
///
/// let inputs = [
/// &b"foo"[..],
/// &b"bar"[..],
/// &b"baz"[..],
/// &b"bing"[..],
/// ];
///
/// update_many(states.iter_mut().zip(inputs.iter()));
///
/// for (state, input) in states.iter_mut().zip(inputs.iter()) {
/// assert_eq!(blake2b(input), state.finalize());
/// }
/// ```
pub fn update_many<'a, 'b, I, T>(pairs: I)
where
I: IntoIterator<Item = (&'a mut State, &'b T)>,
T: 'b + AsRef<[u8]> + ?Sized,
{
// Get the guts::Implementation from the first state, if any.
let mut peekable_pairs = pairs.into_iter().peekable();
let implementation = if let Some((state, _)) = peekable_pairs.peek() {
state.implementation
} else {
// No work items, just short circuit.
return;
};
// Adapt the pairs iterator into a Jobs iterator, but skip over the Jobs
// where there's not actually any work to do (e.g. because there's not much
// input and it's all just going in the State buffer).
let jobs = peekable_pairs.flat_map(|(state, input_t)| {
let mut input = input_t.as_ref();
// For each pair, if the State has some input in its buffer, try to
// finish that buffer. If there wasn't enough input to do that --
// or if the input was empty to begin with -- skip this pair.
state.compress_buffer_if_possible(&mut input);
if input.is_empty() {
return None;
}
// Now we know the buffer is empty and there's more input. Make sure we
// buffer the final block, because update() doesn't finalize.
let mut last_block_start = input.len() - 1;
last_block_start -= last_block_start % BLOCKBYTES;
let (blocks, last_block) = input.split_at(last_block_start);
state.buf[..last_block.len()].copy_from_slice(last_block);
state.buflen = last_block.len() as u8;
// Finally, if the full blocks slice is non-empty, prepare that job for
// compression, and bump the State count.
if blocks.is_empty() {
None
} else {
let count = state.count;
state.count = state.count.wrapping_add(blocks.len() as Count);
Some(Job {
input: blocks,
words: &mut state.words,
count,
last_node: state.last_node,
})
}
});
// Run all the Jobs in the iterator.
compress_many(jobs, implementation, Finalize::No, Stride::Serial);
}
/// A job for the [`hash_many`] function. After calling [`hash_many`] on a
/// collection of `HashManyJob` objects, you can call [`to_hash`] on each job
/// to get the result.
///
/// [`hash_many`]: fn.hash_many.html
/// [`to_hash`]: struct.HashManyJob.html#method.to_hash
#[derive(Clone)]
pub struct HashManyJob<'a> {
words: [Word; 8],
count: Count,
last_node: LastNode,
hash_length: u8,
input: &'a [u8],
finished: bool,
implementation: guts::Implementation,
}
impl<'a> HashManyJob<'a> {
/// Construct a new `HashManyJob` from a set of hashing parameters and an
/// input.
#[inline]
pub fn new(params: &Params, input: &'a [u8]) -> Self {
let mut words = params.to_words();
let mut count = 0;
let mut finished = false;
// If we have key bytes, compress them into the state words. If there's
// no additional input, this compression needs to finalize and set
// finished=true.
if params.key_length > 0 {
let mut finalization = Finalize::No;
if input.is_empty() {
finalization = Finalize::Yes;
finished = true;
}
params.implementation.compress1_loop(
¶ms.key_block,
&mut words,
0,
params.last_node,
finalization,
Stride::Serial,
);
count = BLOCKBYTES as Count;
}
Self {
words,
count,
last_node: params.last_node,
hash_length: params.hash_length,
input,
finished,
implementation: params.implementation,
}
}
/// Get the hash from a finished job. If you call this before calling
/// [`hash_many`], it will panic in debug mode.
///
/// [`hash_many`]: fn.hash_many.html
#[inline]
pub fn to_hash(&self) -> Hash {
debug_assert!(self.finished, "job hasn't been run yet");
Hash {
bytes: state_words_to_bytes(&self.words),
len: self.hash_length,
}
}
}
impl<'a> fmt::Debug for HashManyJob<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// NB: Don't print the words. Leaking them would allow length extension.
write!(
f,
"HashManyJob {{ count: {}, hash_length: {}, last_node: {}, input_len: {} }}",
self.count,
self.hash_length,
self.last_node.yes(),
self.input.len(),
)
}
}
/// Hash any number of complete inputs all at once.
///
/// This is slightly more efficient than using `update_many` with `State`
/// objects, because it doesn't need to do any buffering.
///
/// Running `hash_many` on the same `HashManyJob` object more than once has no
/// effect.
///
/// # Example
///
/// ```
/// use blake2b_simd::{blake2b, Params, many::{HashManyJob, hash_many}};
///
/// let inputs = [
/// &b"foo"[..],
/// &b"bar"[..],
/// &b"baz"[..],
/// &b"bing"[..],
/// ];
///
/// let mut params = Params::new();
/// params.hash_length(16);
///
/// let mut jobs = [
/// HashManyJob::new(¶ms, inputs[0]),
/// HashManyJob::new(¶ms, inputs[1]),
/// HashManyJob::new(¶ms, inputs[2]),
/// HashManyJob::new(¶ms, inputs[3]),
/// ];
///
/// hash_many(jobs.iter_mut());
///
/// for (input, job) in inputs.iter().zip(jobs.iter()) {
/// let expected = params.hash(input);
/// assert_eq!(expected, job.to_hash());
/// }
/// ```
pub fn hash_many<'a, 'b, I>(hash_many_jobs: I)
where
'b: 'a,
I: IntoIterator<Item = &'a mut HashManyJob<'b>>,
{
// Get the guts::Implementation from the first job, if any.
let mut peekable_jobs = hash_many_jobs.into_iter().peekable();
let implementation = if let Some(job) = peekable_jobs.peek() {
job.implementation
} else {
// No work items, just short circuit.
return;
};
// In the jobs iterator, skip HashManyJobs that have already been run. This
// is less because we actually expect callers to call hash_many twice
// (though they're allowed to if they want), and more because
// HashManyJob::new might need to finalize if there are key bytes but no
// input. Tying the job lifetime to the Params reference is an alternative,
// but I've found it too constraining in practice. We could also put key
// bytes in every HashManyJob, but that would add unnecessary storage and
// zeroing for all callers.
let unfinished_jobs = peekable_jobs.into_iter().filter(|j| !j.finished);
let jobs = unfinished_jobs.map(|j| {
j.finished = true;
Job {
input: j.input,
words: &mut j.words,
count: j.count,
last_node: j.last_node,
}
});
compress_many(jobs, implementation, Finalize::Yes, Stride::Serial);
}
#[cfg(test)]
mod test {
use super::*;
use crate::guts;
use crate::paint_test_input;
use crate::BLOCKBYTES;
use arrayvec::ArrayVec;
#[test]
fn test_degree() {
assert!(degree() <= MAX_DEGREE);
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cfg(feature = "std")]
{
if is_x86_feature_detected!("avx2") {
assert!(degree() >= 4);
}
if is_x86_feature_detected!("sse4.1") {
assert!(degree() >= 2);
}
}
}
#[test]
fn test_hash_many() {
// Use a length of inputs that will exercise all of the power-of-two loops.
const LEN: usize = 2 * guts::MAX_DEGREE - 1;
// Rerun LEN inputs LEN different times, with the empty input starting in a
// different spot each time.
let mut input = [0; LEN * BLOCKBYTES];
paint_test_input(&mut input);
for start_offset in 0..LEN {
let mut inputs: [&[u8]; LEN] = [&[]; LEN];
for i in 0..LEN {
let chunks = (i + start_offset) % LEN;
inputs[i] = &input[..chunks * BLOCKBYTES];
}
let mut params: ArrayVec<Params, LEN> = ArrayVec::new();
for i in 0..LEN {
let mut p = Params::new();
p.node_offset(i as u64);
if i % 2 == 1 {
p.last_node(true);
p.key(b"foo");
}
params.push(p);
}
let mut jobs: ArrayVec<HashManyJob, LEN> = ArrayVec::new();
for i in 0..LEN {
jobs.push(HashManyJob::new(¶ms[i], inputs[i]));
}
hash_many(&mut jobs);
// Check the outputs.
for i in 0..LEN {
let expected = params[i].hash(inputs[i]);
assert_eq!(expected, jobs[i].to_hash());
}
}
}
#[test]
fn test_update_many() {
// Use a length of inputs that will exercise all of the power-of-two loops.
const LEN: usize = 2 * guts::MAX_DEGREE - 1;
// Rerun LEN inputs LEN different times, with the empty input starting in a
// different spot each time.
let mut input = [0; LEN * BLOCKBYTES];
paint_test_input(&mut input);
for start_offset in 0..LEN {
let mut inputs: [&[u8]; LEN] = [&[]; LEN];
for i in 0..LEN {
let chunks = (i + start_offset) % LEN;
inputs[i] = &input[..chunks * BLOCKBYTES];
}
let mut params: ArrayVec<Params, LEN> = ArrayVec::new();
for i in 0..LEN {
let mut p = Params::new();
p.node_offset(i as u64);
if i % 2 == 1 {
p.last_node(true);
p.key(b"foo");
}
params.push(p);
}
let mut states: ArrayVec<State, LEN> = ArrayVec::new();
for i in 0..LEN {
states.push(params[i].to_state());
}
// Run each input twice through, to exercise buffering.
update_many(states.iter_mut().zip(inputs.iter()));
update_many(states.iter_mut().zip(inputs.iter()));
// Check the outputs.
for i in 0..LEN {
let mut reference_state = params[i].to_state();
// Again, run the input twice.
reference_state.update(inputs[i]);
reference_state.update(inputs[i]);
assert_eq!(reference_state.finalize(), states[i].finalize());
assert_eq!(2 * inputs[i].len() as Count, states[i].count());
}
}
}
}