1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
//! Implementation of Wasm to CLIF memory access translation.
//!
//! Given
//!
//! * a dynamic Wasm memory index operand,
//! * a static offset immediate, and
//! * a static access size,
//!
//! bounds check the memory access and translate it into a native memory access.
//!
//! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//! !!! !!!
//! !!! THIS CODE IS VERY SUBTLE, HAS MANY SPECIAL CASES, AND IS ALSO !!!
//! !!! ABSOLUTELY CRITICAL FOR MAINTAINING THE SAFETY OF THE WASM HEAP !!!
//! !!! SANDBOX. !!!
//! !!! !!!
//! !!! A good rule of thumb is to get two reviews on any substantive !!!
//! !!! changes in here. !!!
//! !!! !!!
//! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
use super::Reachability;
use crate::{FuncEnvironment, HeapData, HeapStyle};
use cranelift_codegen::{
cursor::{Cursor, FuncCursor},
ir::{self, condcodes::IntCC, InstBuilder, RelSourceLoc},
};
use cranelift_frontend::FunctionBuilder;
use wasmtime_types::WasmResult;
use Reachability::*;
/// Helper used to emit bounds checks (as necessary) and compute the native
/// address of a heap access.
///
/// Returns the `ir::Value` holding the native address of the heap access, or
/// `None` if the heap access will unconditionally trap.
pub fn bounds_check_and_compute_addr<Env>(
builder: &mut FunctionBuilder,
env: &mut Env,
heap: &HeapData,
// Dynamic operand indexing into the heap.
index: ir::Value,
// Static immediate added to the index.
offset: u32,
// Static size of the heap access.
access_size: u8,
) -> WasmResult<Reachability<ir::Value>>
where
Env: FuncEnvironment + ?Sized,
{
let index = cast_index_to_pointer_ty(
index,
heap.index_type,
env.pointer_type(),
&mut builder.cursor(),
);
let offset_and_size = offset_plus_size(offset, access_size);
let spectre_mitigations_enabled = env.heap_access_spectre_mitigation();
// We need to emit code that will trap (or compute an address that will trap
// when accessed) if
//
// index + offset + access_size > bound
//
// or if the `index + offset + access_size` addition overflows.
//
// Note that we ultimately want a 64-bit integer (we only target 64-bit
// architectures at the moment) and that `offset` is a `u32` and
// `access_size` is a `u8`. This means that we can add the latter together
// as `u64`s without fear of overflow, and we only have to be concerned with
// whether adding in `index` will overflow.
//
// Finally, the following right-hand sides of the matches do have a little
// bit of duplicated code across them, but I think writing it this way is
// worth it for readability and seeing very clearly each of our cases for
// different bounds checks and optimizations of those bounds checks. It is
// intentionally written in a straightforward case-matching style that will
// hopefully make it easy to port to ISLE one day.
Ok(match heap.style {
// ====== Dynamic Memories ======
//
// 1. First special case for when `offset + access_size == 1`:
//
// index + 1 > bound
// ==> index >= bound
HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
let bound = builder.ins().global_value(env.pointer_type(), bound_gv);
let oob = builder
.ins()
.icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
Reachable(explicit_check_oob_condition_and_compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
spectre_mitigations_enabled,
oob,
))
}
// 2. Second special case for when we know that there are enough guard
// pages to cover the offset and access size.
//
// The precise should-we-trap condition is
//
// index + offset + access_size > bound
//
// However, if we instead check only the partial condition
//
// index > bound
//
// then the most out of bounds that the access can be, while that
// partial check still succeeds, is `offset + access_size`.
//
// However, when we have a guard region that is at least as large as
// `offset + access_size`, we can rely on the virtual memory
// subsystem handling these out-of-bounds errors at
// runtime. Therefore, the partial `index > bound` check is
// sufficient for this heap configuration.
//
// Additionally, this has the advantage that a series of Wasm loads
// that use the same dynamic index operand but different static
// offset immediates -- which is a common code pattern when accessing
// multiple fields in the same struct that is in linear memory --
// will all emit the same `index > bound` check, which we can GVN.
HeapStyle::Dynamic { bound_gv } if offset_and_size <= heap.offset_guard_size => {
let bound = builder.ins().global_value(env.pointer_type(), bound_gv);
let oob = builder.ins().icmp(IntCC::UnsignedGreaterThan, index, bound);
Reachable(explicit_check_oob_condition_and_compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
spectre_mitigations_enabled,
oob,
))
}
// 3. Third special case for when `offset + access_size <= min_size`.
//
// We know that `bound >= min_size`, so we can do the following
// comparison, without fear of the right-hand side wrapping around:
//
// index + offset + access_size > bound
// ==> index > bound - (offset + access_size)
HeapStyle::Dynamic { bound_gv } if offset_and_size <= heap.min_size.into() => {
let bound = builder.ins().global_value(env.pointer_type(), bound_gv);
let adjusted_bound = builder.ins().iadd_imm(bound, -(offset_and_size as i64));
let oob = builder
.ins()
.icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
Reachable(explicit_check_oob_condition_and_compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
spectre_mitigations_enabled,
oob,
))
}
// 4. General case for dynamic memories:
//
// index + offset + access_size > bound
//
// And we have to handle the overflow case in the left-hand side.
HeapStyle::Dynamic { bound_gv } => {
let access_size_val = builder
.ins()
.iconst(env.pointer_type(), offset_and_size as i64);
let adjusted_index = builder.ins().uadd_overflow_trap(
index,
access_size_val,
ir::TrapCode::HeapOutOfBounds,
);
let bound = builder.ins().global_value(env.pointer_type(), bound_gv);
let oob = builder
.ins()
.icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
Reachable(explicit_check_oob_condition_and_compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
spectre_mitigations_enabled,
oob,
))
}
// ====== Static Memories ======
//
// With static memories we know the size of the heap bound at compile
// time.
//
// 1. First special case: trap immediately if `offset + access_size >
// bound`, since we will end up being out-of-bounds regardless of the
// given `index`.
HeapStyle::Static { bound } if offset_and_size > bound.into() => {
env.before_unconditionally_trapping_memory_access(builder)?;
builder.ins().trap(ir::TrapCode::HeapOutOfBounds);
Unreachable
}
// 2. Second special case for when we can completely omit explicit
// bounds checks for 32-bit static memories.
//
// First, let's rewrite our comparison to move all of the constants
// to one side:
//
// index + offset + access_size > bound
// ==> index > bound - (offset + access_size)
//
// We know the subtraction on the right-hand side won't wrap because
// we didn't hit the first special case.
//
// Additionally, we add our guard pages (if any) to the right-hand
// side, since we can rely on the virtual memory subsystem at runtime
// to catch out-of-bound accesses within the range `bound .. bound +
// guard_size`. So now we are dealing with
//
// index > bound + guard_size - (offset + access_size)
//
// Note that `bound + guard_size` cannot overflow for
// correctly-configured heaps, as otherwise the heap wouldn't fit in
// a 64-bit memory space.
//
// The complement of our should-this-trap comparison expression is
// the should-this-not-trap comparison expression:
//
// index <= bound + guard_size - (offset + access_size)
//
// If we know the right-hand side is greater than or equal to
// `u32::MAX`, then
//
// index <= u32::MAX <= bound + guard_size - (offset + access_size)
//
// This expression is always true when the heap is indexed with
// 32-bit integers because `index` cannot be larger than
// `u32::MAX`. This means that `index` is always either in bounds or
// within the guard page region, neither of which require emitting an
// explicit bounds check.
HeapStyle::Static { bound }
if heap.index_type == ir::types::I32
&& u64::from(u32::MAX)
<= u64::from(bound) + u64::from(heap.offset_guard_size) - offset_and_size =>
{
Reachable(compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
))
}
// 3. General case for static memories.
//
// We have to explicitly test whether
//
// index > bound - (offset + access_size)
//
// and trap if so.
//
// Since we have to emit explicit bounds checks, we might as well be
// precise, not rely on the virtual memory subsystem at all, and not
// factor in the guard pages here.
HeapStyle::Static { bound } => {
// NB: this subtraction cannot wrap because we didn't hit the first
// special case.
let adjusted_bound = u64::from(bound) - offset_and_size;
let oob =
builder
.ins()
.icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
Reachable(explicit_check_oob_condition_and_compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
spectre_mitigations_enabled,
oob,
))
}
})
}
fn cast_index_to_pointer_ty(
index: ir::Value,
index_ty: ir::Type,
pointer_ty: ir::Type,
pos: &mut FuncCursor,
) -> ir::Value {
if index_ty == pointer_ty {
return index;
}
// Note that using 64-bit heaps on a 32-bit host is not currently supported,
// would require at least a bounds check here to ensure that the truncation
// from 64-to-32 bits doesn't lose any upper bits. For now though we're
// mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
assert!(index_ty.bits() < pointer_ty.bits());
// Convert `index` to `addr_ty`.
let extended_index = pos.ins().uextend(pointer_ty, index);
// Add debug value-label alias so that debuginfo can name the extended
// value as the address
let loc = pos.srcloc();
let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
pos.func
.stencil
.dfg
.add_value_label_alias(extended_index, loc, index);
extended_index
}
/// Emit explicit checks on the given out-of-bounds condition for the Wasm
/// address and return the native address.
///
/// This function deduplicates explicit bounds checks and Spectre mitigations
/// that inherently also implement bounds checking.
fn explicit_check_oob_condition_and_compute_addr(
pos: &mut FuncCursor,
heap: &HeapData,
addr_ty: ir::Type,
index: ir::Value,
offset: u32,
// Whether Spectre mitigations are enabled for heap accesses.
spectre_mitigations_enabled: bool,
// The `i8` boolean value that is non-zero when the heap access is out of
// bounds (and therefore we should trap) and is zero when the heap access is
// in bounds (and therefore we can proceed).
oob_condition: ir::Value,
) -> ir::Value {
if !spectre_mitigations_enabled {
pos.ins()
.trapnz(oob_condition, ir::TrapCode::HeapOutOfBounds);
}
let mut addr = compute_addr(pos, heap, addr_ty, index, offset);
if spectre_mitigations_enabled {
let null = pos.ins().iconst(addr_ty, 0);
addr = pos.ins().select_spectre_guard(oob_condition, null, addr);
}
addr
}
/// Emit code for the native address computation of a Wasm address,
/// without any bounds checks or overflow checks.
///
/// It is the caller's responsibility to ensure that any necessary bounds and
/// overflow checks are emitted, and that the resulting address is never used
/// unless they succeed.
fn compute_addr(
pos: &mut FuncCursor,
heap: &HeapData,
addr_ty: ir::Type,
index: ir::Value,
offset: u32,
) -> ir::Value {
debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);
let heap_base = pos.ins().global_value(addr_ty, heap.base);
let base_and_index = pos.ins().iadd(heap_base, index);
if offset == 0 {
base_and_index
} else {
// NB: The addition of the offset immediate must happen *before* the
// `select_spectre_guard`, if any. If it happens after, then we
// potentially are letting speculative execution read the whole first
// 4GiB of memory.
pos.ins().iadd_imm(base_and_index, offset as i64)
}
}
#[inline]
fn offset_plus_size(offset: u32, size: u8) -> u64 {
// Cannot overflow because we are widening to `u64`.
offset as u64 + size as u64
}