1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
//! Implements the pooling instance allocator.
//!
//! The pooling instance allocator maps memory in advance
//! and allocates instances, memories, tables, and stacks from
//! a pool of available resources.
//!
//! Using the pooling instance allocator can speed up module instantiation
//! when modules can be constrained based on configurable limits.

use super::{InstanceAllocationRequest, InstanceAllocator};
use crate::{instance::Instance, Memory, Mmap, Table};
use crate::{CompiledModuleId, MemoryImageSlot};
use anyhow::{anyhow, bail, Context, Result};
use libc::c_void;
use std::convert::TryFrom;
use std::mem;
use std::sync::Mutex;
use wasmtime_environ::{
    DefinedMemoryIndex, DefinedTableIndex, HostPtr, MemoryStyle, Module, PrimaryMap, Tunables,
    VMOffsets, WASM_PAGE_SIZE,
};

mod index_allocator;
use index_allocator::{IndexAllocator, SlotId};

cfg_if::cfg_if! {
    if #[cfg(windows)] {
        mod windows;
        use windows as imp;
    } else {
        mod unix;
        use unix as imp;
    }
}

use imp::{commit_table_pages, decommit_table_pages};

#[cfg(all(feature = "async", unix))]
use imp::{commit_stack_pages, reset_stack_pages_to_zero};

fn round_up_to_pow2(n: usize, to: usize) -> usize {
    debug_assert!(to > 0);
    debug_assert!(to.is_power_of_two());
    (n + to - 1) & !(to - 1)
}

/// Instance-related limit configuration for pooling.
///
/// More docs on this can be found at `wasmtime::PoolingAllocationConfig`.
#[derive(Debug, Copy, Clone)]
pub struct InstanceLimits {
    /// Maximum instances to support
    pub count: u32,

    /// Maximum size of instance VMContext
    pub size: usize,

    /// Maximum number of tables per instance
    pub tables: u32,

    /// Maximum number of table elements per table
    pub table_elements: u32,

    /// Maximum number of linear memories per instance
    pub memories: u32,

    /// Maximum number of wasm pages for each linear memory.
    pub memory_pages: u64,
}

impl Default for InstanceLimits {
    fn default() -> Self {
        // See doc comments for `wasmtime::PoolingAllocationConfig` for these
        // default values
        Self {
            count: 1000,
            size: 1 << 20, // 1 MB
            tables: 1,
            table_elements: 10_000,
            memories: 1,
            memory_pages: 160,
        }
    }
}

/// Represents a pool of WebAssembly linear memories.
///
/// A linear memory is divided into accessible pages and guard pages.
///
/// Each instance index into the pool returns an iterator over the base
/// addresses of the instance's linear memories.
///
/// A diagram for this struct's fields is:
///
/// ```ignore
///                       memory_size
///                           /
///         max_accessible   /                    memory_and_guard_size
///                 |       /                               |
///              <--+--->  /                    <-----------+---------->
///              <--------+->
///
/// +-----------+--------+---+-----------+     +--------+---+-----------+
/// | PROT_NONE |            | PROT_NONE | ... |            | PROT_NONE |
/// +-----------+--------+---+-----------+     +--------+---+-----------+
/// |           |<------------------+---------------------------------->
/// \           |                    \
/// mapping     |     `max_instances * max_memories` memories
///            /
///    initial_memory_offset
/// ```
#[derive(Debug)]
struct MemoryPool {
    mapping: Mmap,
    // If using a copy-on-write allocation scheme, the slot management. We
    // dynamically transfer ownership of a slot to a Memory when in
    // use.
    image_slots: Vec<Mutex<Option<MemoryImageSlot>>>,
    // The size, in bytes, of each linear memory's reservation, not including
    // any guard region.
    memory_size: usize,
    // The size, in bytes, of each linear memory's reservation plus the trailing
    // guard region allocated for it.
    memory_and_guard_size: usize,
    // The maximum size that can become accessible, in bytes, of each linear
    // memory. Guaranteed to be a whole number of wasm pages.
    max_accessible: usize,
    // The size, in bytes, of the offset to the first linear memory in this
    // pool. This is here to help account for the first region of guard pages,
    // if desired, before the first linear memory.
    initial_memory_offset: usize,
    max_memories: usize,
    max_instances: usize,
}

impl MemoryPool {
    fn new(instance_limits: &InstanceLimits, tunables: &Tunables) -> Result<Self> {
        // The maximum module memory page count cannot exceed 65536 pages
        if instance_limits.memory_pages > 0x10000 {
            bail!(
                "module memory page limit of {} exceeds the maximum of 65536",
                instance_limits.memory_pages
            );
        }

        // Interpret the larger of the maximal size of memory or the static
        // memory bound as the size of the virtual address space reservation for
        // memory itself. Typically `static_memory_bound` is 4G which helps
        // elide most bounds checks in wasm. If `memory_pages` is larger,
        // though, then this is a non-moving pooling allocator so create larger
        // reservations for account for that.
        let memory_size = instance_limits
            .memory_pages
            .max(tunables.static_memory_bound)
            * u64::from(WASM_PAGE_SIZE);

        let memory_and_guard_size =
            usize::try_from(memory_size + tunables.static_memory_offset_guard_size)
                .map_err(|_| anyhow!("memory reservation size exceeds addressable memory"))?;

        assert!(
            memory_and_guard_size % crate::page_size() == 0,
            "memory size {} is not a multiple of system page size",
            memory_and_guard_size
        );

        let max_instances = instance_limits.count as usize;
        let max_memories = instance_limits.memories as usize;
        let initial_memory_offset = if tunables.guard_before_linear_memory {
            usize::try_from(tunables.static_memory_offset_guard_size).unwrap()
        } else {
            0
        };

        // The entire allocation here is the size of each memory times the
        // max memories per instance times the number of instances allowed in
        // this pool, plus guard regions.
        //
        // Note, though, that guard regions are required to be after each linear
        // memory. If the `guard_before_linear_memory` setting is specified,
        // then due to the contiguous layout of linear memories the guard pages
        // after one memory are also guard pages preceding the next linear
        // memory. This means that we only need to handle pre-guard-page sizes
        // specially for the first linear memory, hence the
        // `initial_memory_offset` variable here. If guards aren't specified
        // before linear memories this is set to `0`, otherwise it's set to
        // the same size as guard regions for other memories.
        let allocation_size = memory_and_guard_size
            .checked_mul(max_memories)
            .and_then(|c| c.checked_mul(max_instances))
            .and_then(|c| c.checked_add(initial_memory_offset))
            .ok_or_else(|| {
                anyhow!("total size of memory reservation exceeds addressable memory")
            })?;

        // Create a completely inaccessible region to start
        let mapping = Mmap::accessible_reserved(0, allocation_size)
            .context("failed to create memory pool mapping")?;

        let num_image_slots = max_instances * max_memories;
        let image_slots: Vec<_> = std::iter::repeat_with(|| Mutex::new(None))
            .take(num_image_slots)
            .collect();

        let pool = Self {
            mapping,
            image_slots,
            memory_size: memory_size.try_into().unwrap(),
            memory_and_guard_size,
            initial_memory_offset,
            max_memories,
            max_instances,
            max_accessible: (instance_limits.memory_pages as usize) * (WASM_PAGE_SIZE as usize),
        };

        Ok(pool)
    }

    fn get_base(&self, instance_index: usize, memory_index: DefinedMemoryIndex) -> *mut u8 {
        assert!(instance_index < self.max_instances);
        let memory_index = memory_index.as_u32() as usize;
        assert!(memory_index < self.max_memories);
        let idx = instance_index * self.max_memories + memory_index;
        let offset = self.initial_memory_offset + idx * self.memory_and_guard_size;
        unsafe { self.mapping.as_mut_ptr().offset(offset as isize) }
    }

    #[cfg(test)]
    fn get<'a>(&'a self, instance_index: usize) -> impl Iterator<Item = *mut u8> + 'a {
        (0..self.max_memories)
            .map(move |i| self.get_base(instance_index, DefinedMemoryIndex::from_u32(i as u32)))
    }

    /// Take ownership of the given image slot. Must be returned via
    /// `return_memory_image_slot` when the instance is done using it.
    fn take_memory_image_slot(
        &self,
        instance_index: usize,
        memory_index: DefinedMemoryIndex,
    ) -> MemoryImageSlot {
        let idx = instance_index * self.max_memories + (memory_index.as_u32() as usize);
        let maybe_slot = self.image_slots[idx].lock().unwrap().take();

        maybe_slot.unwrap_or_else(|| {
            MemoryImageSlot::create(
                self.get_base(instance_index, memory_index) as *mut c_void,
                0,
                self.max_accessible,
            )
        })
    }

    /// Return ownership of the given image slot.
    fn return_memory_image_slot(
        &self,
        instance_index: usize,
        memory_index: DefinedMemoryIndex,
        slot: MemoryImageSlot,
    ) {
        assert!(!slot.is_dirty());
        let idx = instance_index * self.max_memories + (memory_index.as_u32() as usize);
        *self.image_slots[idx].lock().unwrap() = Some(slot);
    }

    /// Resets all the images for the instance index slot specified to clear out
    /// any prior mappings.
    ///
    /// This is used when a `Module` is dropped at the `wasmtime` layer to clear
    /// out any remaining mappings and ensure that its memfd backing, if any, is
    /// removed from the address space to avoid lingering references to it.
    fn clear_images(&self, instance_index: usize) {
        for i in 0..self.max_memories {
            let index = DefinedMemoryIndex::from_u32(i as u32);

            // Clear the image from the slot and, if successful, return it back
            // to our state. Note that on failure here the whole slot will get
            // paved over with an anonymous mapping.
            let mut slot = self.take_memory_image_slot(instance_index, index);
            if slot.remove_image().is_ok() {
                self.return_memory_image_slot(instance_index, index, slot);
            }
        }
    }
}

impl Drop for MemoryPool {
    fn drop(&mut self) {
        // Clear the `clear_no_drop` flag (i.e., ask to *not* clear on
        // drop) for all slots, and then drop them here. This is
        // valid because the one `Mmap` that covers the whole region
        // can just do its one munmap.
        for mut slot in std::mem::take(&mut self.image_slots) {
            if let Some(slot) = slot.get_mut().unwrap() {
                slot.no_clear_on_drop();
            }
        }
    }
}

/// Represents a pool of WebAssembly tables.
///
/// Each instance index into the pool returns an iterator over the base addresses
/// of the instance's tables.
#[derive(Debug)]
struct TablePool {
    mapping: Mmap,
    table_size: usize,
    max_tables: usize,
    max_instances: usize,
    page_size: usize,
    max_elements: u32,
}

impl TablePool {
    fn new(instance_limits: &InstanceLimits) -> Result<Self> {
        let page_size = crate::page_size();

        let table_size = round_up_to_pow2(
            mem::size_of::<*mut u8>()
                .checked_mul(instance_limits.table_elements as usize)
                .ok_or_else(|| anyhow!("table size exceeds addressable memory"))?,
            page_size,
        );

        let max_instances = instance_limits.count as usize;
        let max_tables = instance_limits.tables as usize;

        let allocation_size = table_size
            .checked_mul(max_tables)
            .and_then(|c| c.checked_mul(max_instances))
            .ok_or_else(|| anyhow!("total size of instance tables exceeds addressable memory"))?;

        let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
            .context("failed to create table pool mapping")?;

        Ok(Self {
            mapping,
            table_size,
            max_tables,
            max_instances,
            page_size,
            max_elements: instance_limits.table_elements,
        })
    }

    fn get(&self, instance_index: usize) -> impl Iterator<Item = *mut u8> {
        assert!(instance_index < self.max_instances);

        let base: *mut u8 = unsafe {
            self.mapping
                .as_mut_ptr()
                .add(instance_index * self.table_size * self.max_tables) as _
        };

        let size = self.table_size;
        (0..self.max_tables).map(move |i| unsafe { base.add(i * size) })
    }
}

/// Represents a pool of execution stacks (used for the async fiber implementation).
///
/// Each index into the pool represents a single execution stack. The maximum number of
/// stacks is the same as the maximum number of instances.
///
/// As stacks grow downwards, each stack starts (lowest address) with a guard page
/// that can be used to detect stack overflow.
///
/// The top of the stack (starting stack pointer) is returned when a stack is allocated
/// from the pool.
#[cfg(all(feature = "async", unix))]
#[derive(Debug)]
struct StackPool {
    mapping: Mmap,
    stack_size: usize,
    max_instances: usize,
    page_size: usize,
    index_allocator: IndexAllocator,
    async_stack_zeroing: bool,
    async_stack_keep_resident: usize,
}

#[cfg(all(feature = "async", unix))]
impl StackPool {
    fn new(config: &PoolingInstanceAllocatorConfig) -> Result<Self> {
        use rustix::mm::{mprotect, MprotectFlags};

        let page_size = crate::page_size();

        // Add a page to the stack size for the guard page when using fiber stacks
        let stack_size = if config.stack_size == 0 {
            0
        } else {
            round_up_to_pow2(config.stack_size, page_size)
                .checked_add(page_size)
                .ok_or_else(|| anyhow!("stack size exceeds addressable memory"))?
        };

        let max_instances = config.limits.count as usize;

        let allocation_size = stack_size
            .checked_mul(max_instances)
            .ok_or_else(|| anyhow!("total size of execution stacks exceeds addressable memory"))?;

        let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
            .context("failed to create stack pool mapping")?;

        // Set up the stack guard pages
        if allocation_size > 0 {
            unsafe {
                for i in 0..max_instances {
                    // Make the stack guard page inaccessible
                    let bottom_of_stack = mapping.as_mut_ptr().add(i * stack_size);
                    mprotect(bottom_of_stack.cast(), page_size, MprotectFlags::empty())
                        .context("failed to protect stack guard page")?;
                }
            }
        }

        Ok(Self {
            mapping,
            stack_size,
            max_instances,
            page_size,
            async_stack_zeroing: config.async_stack_zeroing,
            async_stack_keep_resident: config.async_stack_keep_resident,
            // Note that `max_unused_warm_slots` is set to zero since stacks
            // have no affinity so there's no need to keep intentionally unused
            // warm slots around.
            index_allocator: IndexAllocator::new(config.limits.count, 0),
        })
    }

    fn allocate(&self) -> Result<wasmtime_fiber::FiberStack> {
        if self.stack_size == 0 {
            bail!("pooling allocator not configured to enable fiber stack allocation");
        }

        let index = self
            .index_allocator
            .alloc(None)
            .ok_or_else(|| {
                anyhow!(
                    "maximum concurrent fiber limit of {} reached",
                    self.max_instances
                )
            })?
            .index();

        assert!(index < self.max_instances);

        unsafe {
            // Remove the guard page from the size
            let size_without_guard = self.stack_size - self.page_size;

            let bottom_of_stack = self
                .mapping
                .as_mut_ptr()
                .add((index * self.stack_size) + self.page_size);

            commit_stack_pages(bottom_of_stack, size_without_guard)?;

            let stack =
                wasmtime_fiber::FiberStack::from_top_ptr(bottom_of_stack.add(size_without_guard))?;
            Ok(stack)
        }
    }

    fn deallocate(&self, stack: &wasmtime_fiber::FiberStack) {
        let top = stack
            .top()
            .expect("fiber stack not allocated from the pool") as usize;

        let base = self.mapping.as_ptr() as usize;
        let len = self.mapping.len();
        assert!(
            top > base && top <= (base + len),
            "fiber stack top pointer not in range"
        );

        // Remove the guard page from the size
        let stack_size = self.stack_size - self.page_size;
        let bottom_of_stack = top - stack_size;
        let start_of_stack = bottom_of_stack - self.page_size;
        assert!(start_of_stack >= base && start_of_stack < (base + len));
        assert!((start_of_stack - base) % self.stack_size == 0);

        let index = (start_of_stack - base) / self.stack_size;
        assert!(index < self.max_instances);

        if self.async_stack_zeroing {
            self.zero_stack(bottom_of_stack, stack_size);
        }

        self.index_allocator.free(SlotId(index as u32));
    }

    fn zero_stack(&self, bottom: usize, size: usize) {
        // Manually zero the top of the stack to keep the pages resident in
        // memory and avoid future page faults. Use the system to deallocate
        // pages past this. This hopefully strikes a reasonable balance between:
        //
        // * memset for the whole range is probably expensive
        // * madvise for the whole range incurs expensive future page faults
        // * most threads probably don't use most of the stack anyway
        let size_to_memset = size.min(self.async_stack_keep_resident);
        unsafe {
            std::ptr::write_bytes(
                (bottom + size - size_to_memset) as *mut u8,
                0,
                size_to_memset,
            );
        }

        // Use the system to reset remaining stack pages to zero.
        reset_stack_pages_to_zero(bottom as _, size - size_to_memset).unwrap();
    }
}

/// Configuration options for the pooling instance allocator supplied at
/// construction.
#[derive(Copy, Clone, Debug)]
pub struct PoolingInstanceAllocatorConfig {
    /// See `PoolingAllocatorConfig::max_unused_warm_slots` in `wasmtime`
    pub max_unused_warm_slots: u32,
    /// The size, in bytes, of async stacks to allocate (not including the guard
    /// page).
    pub stack_size: usize,
    /// The limits to apply to instances allocated within this allocator.
    pub limits: InstanceLimits,
    /// Whether or not async stacks are zeroed after use.
    pub async_stack_zeroing: bool,
    /// If async stack zeroing is enabled and the host platform is Linux this is
    /// how much memory to zero out with `memset`.
    ///
    /// The rest of memory will be zeroed out with `madvise`.
    pub async_stack_keep_resident: usize,
    /// How much linear memory, in bytes, to keep resident after resetting for
    /// use with the next instance. This much memory will be `memset` to zero
    /// when a linear memory is deallocated.
    ///
    /// Memory exceeding this amount in the wasm linear memory will be released
    /// with `madvise` back to the kernel.
    ///
    /// Only applicable on Linux.
    pub linear_memory_keep_resident: usize,
    /// Same as `linear_memory_keep_resident` but for tables.
    pub table_keep_resident: usize,
}

impl Default for PoolingInstanceAllocatorConfig {
    fn default() -> PoolingInstanceAllocatorConfig {
        PoolingInstanceAllocatorConfig {
            max_unused_warm_slots: 100,
            stack_size: 2 << 20,
            limits: InstanceLimits::default(),
            async_stack_zeroing: false,
            async_stack_keep_resident: 0,
            linear_memory_keep_resident: 0,
            table_keep_resident: 0,
        }
    }
}

/// Implements the pooling instance allocator.
///
/// This allocator internally maintains pools of instances, memories, tables, and stacks.
///
/// Note: the resource pools are manually dropped so that the fault handler terminates correctly.
#[derive(Debug)]
pub struct PoolingInstanceAllocator {
    instance_size: usize,
    max_instances: usize,
    index_allocator: IndexAllocator,
    memories: MemoryPool,
    tables: TablePool,
    linear_memory_keep_resident: usize,
    table_keep_resident: usize,

    #[cfg(all(feature = "async", unix))]
    stacks: StackPool,
    #[cfg(all(feature = "async", windows))]
    stack_size: usize,
}

impl PoolingInstanceAllocator {
    /// Creates a new pooling instance allocator with the given strategy and limits.
    pub fn new(config: &PoolingInstanceAllocatorConfig, tunables: &Tunables) -> Result<Self> {
        if config.limits.count == 0 {
            bail!("the instance count limit cannot be zero");
        }

        let max_instances = config.limits.count as usize;

        Ok(Self {
            instance_size: round_up_to_pow2(config.limits.size, mem::align_of::<Instance>()),
            max_instances,
            index_allocator: IndexAllocator::new(config.limits.count, config.max_unused_warm_slots),
            memories: MemoryPool::new(&config.limits, tunables)?,
            tables: TablePool::new(&config.limits)?,
            linear_memory_keep_resident: config.linear_memory_keep_resident,
            table_keep_resident: config.table_keep_resident,
            #[cfg(all(feature = "async", unix))]
            stacks: StackPool::new(config)?,
            #[cfg(all(feature = "async", windows))]
            stack_size: config.stack_size,
        })
    }

    fn reset_table_pages_to_zero(&self, base: *mut u8, size: usize) -> Result<()> {
        let size_to_memset = size.min(self.table_keep_resident);
        unsafe {
            std::ptr::write_bytes(base, 0, size_to_memset);
            decommit_table_pages(base.add(size_to_memset), size - size_to_memset)?;
        }
        Ok(())
    }

    fn validate_table_plans(&self, module: &Module) -> Result<()> {
        let tables = module.table_plans.len() - module.num_imported_tables;
        if tables > self.tables.max_tables {
            bail!(
                "defined tables count of {} exceeds the limit of {}",
                tables,
                self.tables.max_tables,
            );
        }

        for (i, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
            if plan.table.minimum > self.tables.max_elements {
                bail!(
                    "table index {} has a minimum element size of {} which exceeds the limit of {}",
                    i.as_u32(),
                    plan.table.minimum,
                    self.tables.max_elements,
                );
            }
        }
        Ok(())
    }

    fn validate_memory_plans(&self, module: &Module) -> Result<()> {
        let memories = module.memory_plans.len() - module.num_imported_memories;
        if memories > self.memories.max_memories {
            bail!(
                "defined memories count of {} exceeds the limit of {}",
                memories,
                self.memories.max_memories,
            );
        }

        for (i, plan) in module
            .memory_plans
            .iter()
            .skip(module.num_imported_memories)
        {
            match plan.style {
                MemoryStyle::Static { bound } => {
                    if (self.memories.memory_size as u64) < bound {
                        bail!(
                            "memory size allocated per-memory is too small to \
                             satisfy static bound of {bound:#x} pages"
                        );
                    }
                }
                MemoryStyle::Dynamic { .. } => {}
            }
            let max = self.memories.max_accessible / (WASM_PAGE_SIZE as usize);
            if plan.memory.minimum > (max as u64) {
                bail!(
                    "memory index {} has a minimum page size of {} which exceeds the limit of {}",
                    i.as_u32(),
                    plan.memory.minimum,
                    max,
                );
            }
        }
        Ok(())
    }

    fn validate_instance_size(&self, offsets: &VMOffsets<HostPtr>) -> Result<()> {
        let layout = Instance::alloc_layout(offsets);
        if layout.size() <= self.instance_size {
            return Ok(());
        }

        // If this `module` exceeds the allocation size allotted to it then an
        // error will be reported here. The error of "required N bytes but
        // cannot allocate that" is pretty opaque, however, because it's not
        // clear what the breakdown of the N bytes are and what to optimize
        // next. To help provide a better error message here some fancy-ish
        // logic is done here to report the breakdown of the byte request into
        // the largest portions and where it's coming from.
        let mut message = format!(
            "instance allocation for this module \
             requires {} bytes which exceeds the configured maximum \
             of {} bytes; breakdown of allocation requirement:\n\n",
            layout.size(),
            self.instance_size,
        );

        let mut remaining = layout.size();
        let mut push = |name: &str, bytes: usize| {
            assert!(remaining >= bytes);
            remaining -= bytes;

            // If the `name` region is more than 5% of the allocation request
            // then report it here, otherwise ignore it. We have less than 20
            // fields so we're guaranteed that something should be reported, and
            // otherwise it's not particularly interesting to learn about 5
            // different fields that are all 8 or 0 bytes. Only try to report
            // the "major" sources of bytes here.
            if bytes > layout.size() / 20 {
                message.push_str(&format!(
                    " * {:.02}% - {} bytes - {}\n",
                    ((bytes as f32) / (layout.size() as f32)) * 100.0,
                    bytes,
                    name,
                ));
            }
        };

        // The `Instance` itself requires some size allocated to it.
        push("instance state management", mem::size_of::<Instance>());

        // Afterwards the `VMContext`'s regions are why we're requesting bytes,
        // so ask it for descriptions on each region's byte size.
        for (desc, size) in offsets.region_sizes() {
            push(desc, size as usize);
        }

        // double-check we accounted for all the bytes
        assert_eq!(remaining, 0);

        bail!("{}", message)
    }
}

unsafe impl InstanceAllocator for PoolingInstanceAllocator {
    fn validate(&self, module: &Module, offsets: &VMOffsets<HostPtr>) -> Result<()> {
        self.validate_memory_plans(module)?;
        self.validate_table_plans(module)?;
        self.validate_instance_size(offsets)?;

        Ok(())
    }

    fn allocate_index(&self, req: &InstanceAllocationRequest) -> Result<usize> {
        self.index_allocator
            .alloc(req.runtime_info.unique_id())
            .map(|id| id.index())
            .ok_or_else(|| {
                anyhow!(
                    "maximum concurrent instance limit of {} reached",
                    self.max_instances
                )
            })
    }

    fn deallocate_index(&self, index: usize) {
        self.index_allocator.free(SlotId(index as u32));
    }

    fn allocate_memories(
        &self,
        index: usize,
        req: &mut InstanceAllocationRequest,
        memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
    ) -> Result<()> {
        let module = req.runtime_info.module();

        self.validate_memory_plans(module)?;

        for (memory_index, plan) in module
            .memory_plans
            .iter()
            .skip(module.num_imported_memories)
        {
            let defined_index = module
                .defined_memory_index(memory_index)
                .expect("should be a defined memory since we skipped imported ones");

            // Double-check that the runtime requirements of the memory are
            // satisfied by the configuration of this pooling allocator. This
            // should be returned as an error through `validate_memory_plans`
            // but double-check here to be sure.
            match plan.style {
                MemoryStyle::Static { bound } => {
                    let bound = bound * u64::from(WASM_PAGE_SIZE);
                    assert!(bound <= (self.memories.memory_size as u64));
                }
                MemoryStyle::Dynamic { .. } => {}
            }

            let memory = unsafe {
                std::slice::from_raw_parts_mut(
                    self.memories.get_base(index, defined_index),
                    self.memories.max_accessible,
                )
            };

            let mut slot = self.memories.take_memory_image_slot(index, defined_index);
            let image = req.runtime_info.memory_image(defined_index)?;
            let initial_size = plan.memory.minimum * WASM_PAGE_SIZE as u64;

            // If instantiation fails, we can propagate the error
            // upward and drop the slot. This will cause the Drop
            // handler to attempt to map the range with PROT_NONE
            // memory, to reserve the space while releasing any
            // stale mappings. The next use of this slot will then
            // create a new slot that will try to map over
            // this, returning errors as well if the mapping
            // errors persist. The unmap-on-drop is best effort;
            // if it fails, then we can still soundly continue
            // using the rest of the pool and allowing the rest of
            // the process to continue, because we never perform a
            // mmap that would leave an open space for someone
            // else to come in and map something.
            slot.instantiate(initial_size as usize, image, &plan)?;

            memories.push(Memory::new_static(
                plan,
                memory,
                slot,
                self.memories.memory_and_guard_size,
                unsafe { &mut *req.store.get().unwrap() },
            )?);
        }

        Ok(())
    }

    fn deallocate_memories(&self, index: usize, mems: &mut PrimaryMap<DefinedMemoryIndex, Memory>) {
        // Decommit any linear memories that were used.
        for (def_mem_idx, memory) in mem::take(mems) {
            let mut image = memory.unwrap_static_image();
            // Reset the image slot. If there is any error clearing the
            // image, just drop it here, and let the drop handler for the
            // slot unmap in a way that retains the address space
            // reservation.
            if image
                .clear_and_remain_ready(self.linear_memory_keep_resident)
                .is_ok()
            {
                self.memories
                    .return_memory_image_slot(index, def_mem_idx, image);
            }
        }
    }

    fn allocate_tables(
        &self,
        index: usize,
        req: &mut InstanceAllocationRequest,
        tables: &mut PrimaryMap<DefinedTableIndex, Table>,
    ) -> Result<()> {
        let module = req.runtime_info.module();

        self.validate_table_plans(module)?;

        let mut bases = self.tables.get(index);
        for (_, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
            let base = bases.next().unwrap() as _;

            commit_table_pages(
                base as *mut u8,
                self.tables.max_elements as usize * mem::size_of::<*mut u8>(),
            )?;

            tables.push(Table::new_static(
                plan,
                unsafe { std::slice::from_raw_parts_mut(base, self.tables.max_elements as usize) },
                unsafe { &mut *req.store.get().unwrap() },
            )?);
        }

        Ok(())
    }

    fn deallocate_tables(&self, index: usize, tables: &mut PrimaryMap<DefinedTableIndex, Table>) {
        // Decommit any tables that were used
        for (table, base) in tables.values_mut().zip(self.tables.get(index)) {
            let table = mem::take(table);
            assert!(table.is_static());

            let size = round_up_to_pow2(
                table.size() as usize * mem::size_of::<*mut u8>(),
                self.tables.page_size,
            );

            drop(table);
            self.reset_table_pages_to_zero(base, size)
                .expect("failed to decommit table pages");
        }
    }

    #[cfg(all(feature = "async", unix))]
    fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack> {
        self.stacks.allocate()
    }

    #[cfg(all(feature = "async", unix))]
    unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack) {
        self.stacks.deallocate(stack);
    }

    #[cfg(all(feature = "async", windows))]
    fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack> {
        if self.stack_size == 0 {
            bail!("fiber stack allocation not supported")
        }

        // On windows, we don't use a stack pool as we use the native fiber implementation
        let stack = wasmtime_fiber::FiberStack::new(self.stack_size)?;
        Ok(stack)
    }

    #[cfg(all(feature = "async", windows))]
    unsafe fn deallocate_fiber_stack(&self, _stack: &wasmtime_fiber::FiberStack) {
        // A no-op as we don't own the fiber stack on Windows
    }

    fn purge_module(&self, module: CompiledModuleId) {
        // Purging everything related to `module` primarily means clearing out
        // all of its memory images present in the virtual address space. Go
        // through the index allocator for slots affine to `module` and reset
        // them, freeing up the index when we're done.
        //
        // Note that this is only called when the specified `module` won't be
        // allocated further (the module is being dropped) so this shouldn't hit
        // any sort of infinite loop since this should be the final operation
        // working with `module`.
        while let Some(index) = self.index_allocator.alloc_affine_and_clear_affinity(module) {
            self.memories.clear_images(index.index());
            self.index_allocator.free(index);
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{
        CompiledModuleId, Imports, MemoryImage, ModuleRuntimeInfo, StorePtr, VMFunctionBody,
        VMSharedSignatureIndex,
    };
    use std::sync::Arc;
    use wasmtime_environ::{DefinedFuncIndex, DefinedMemoryIndex};

    pub(crate) fn empty_runtime_info(
        module: Arc<wasmtime_environ::Module>,
    ) -> Arc<dyn ModuleRuntimeInfo> {
        struct RuntimeInfo(Arc<wasmtime_environ::Module>, VMOffsets<HostPtr>);

        impl ModuleRuntimeInfo for RuntimeInfo {
            fn module(&self) -> &Arc<wasmtime_environ::Module> {
                &self.0
            }
            fn function(&self, _: DefinedFuncIndex) -> *mut VMFunctionBody {
                unimplemented!()
            }
            fn memory_image(
                &self,
                _: DefinedMemoryIndex,
            ) -> anyhow::Result<Option<&Arc<MemoryImage>>> {
                Ok(None)
            }

            fn unique_id(&self) -> Option<CompiledModuleId> {
                None
            }
            fn wasm_data(&self) -> &[u8] {
                &[]
            }
            fn signature_ids(&self) -> &[VMSharedSignatureIndex] {
                &[]
            }
            fn offsets(&self) -> &VMOffsets<HostPtr> {
                &self.1
            }
        }

        let offsets = VMOffsets::new(HostPtr, &module);
        Arc::new(RuntimeInfo(module, offsets))
    }

    #[cfg(target_pointer_width = "64")]
    #[test]
    fn test_instance_pool() -> Result<()> {
        let mut config = PoolingInstanceAllocatorConfig::default();
        config.max_unused_warm_slots = 0;
        config.limits = InstanceLimits {
            count: 3,
            tables: 1,
            memories: 1,
            table_elements: 10,
            size: 1000,
            memory_pages: 1,
            ..Default::default()
        };

        let instances = PoolingInstanceAllocator::new(
            &config,
            &Tunables {
                static_memory_bound: 1,
                ..Tunables::default()
            },
        )?;

        assert_eq!(instances.instance_size, 1008); // round 1000 up to alignment
        assert_eq!(instances.max_instances, 3);

        assert_eq!(instances.index_allocator.testing_freelist(), []);

        let mut handles = Vec::new();
        let module = Arc::new(Module::default());

        for _ in (0..3).rev() {
            handles.push(
                instances
                    .allocate(InstanceAllocationRequest {
                        runtime_info: &empty_runtime_info(module.clone()),
                        imports: Imports {
                            functions: &[],
                            tables: &[],
                            memories: &[],
                            globals: &[],
                        },
                        host_state: Box::new(()),
                        store: StorePtr::empty(),
                    })
                    .expect("allocation should succeed"),
            );
        }

        assert_eq!(instances.index_allocator.testing_freelist(), []);

        match instances.allocate(InstanceAllocationRequest {
            runtime_info: &empty_runtime_info(module),
            imports: Imports {
                functions: &[],
                tables: &[],
                memories: &[],
                globals: &[],
            },
            host_state: Box::new(()),
            store: StorePtr::empty(),
        }) {
            Err(_) => {}
            _ => panic!("unexpected error"),
        };

        for mut handle in handles.drain(..) {
            instances.deallocate(&mut handle);
        }

        assert_eq!(
            instances.index_allocator.testing_freelist(),
            [SlotId(0), SlotId(1), SlotId(2)]
        );

        Ok(())
    }

    #[cfg(target_pointer_width = "64")]
    #[test]
    fn test_memory_pool() -> Result<()> {
        let pool = MemoryPool::new(
            &InstanceLimits {
                count: 5,
                tables: 0,
                memories: 3,
                table_elements: 0,
                memory_pages: 1,
                ..Default::default()
            },
            &Tunables {
                static_memory_bound: 1,
                static_memory_offset_guard_size: 0,
                ..Tunables::default()
            },
        )?;

        assert_eq!(pool.memory_and_guard_size, WASM_PAGE_SIZE as usize);
        assert_eq!(pool.max_memories, 3);
        assert_eq!(pool.max_instances, 5);
        assert_eq!(pool.max_accessible, WASM_PAGE_SIZE as usize);

        let base = pool.mapping.as_ptr() as usize;

        for i in 0..5 {
            let mut iter = pool.get(i);

            for j in 0..3 {
                assert_eq!(
                    iter.next().unwrap() as usize - base,
                    ((i * 3) + j) * pool.memory_and_guard_size
                );
            }

            assert_eq!(iter.next(), None);
        }

        Ok(())
    }

    #[cfg(target_pointer_width = "64")]
    #[test]
    fn test_table_pool() -> Result<()> {
        let pool = TablePool::new(&InstanceLimits {
            count: 7,
            table_elements: 100,
            memory_pages: 0,
            tables: 4,
            memories: 0,
            ..Default::default()
        })?;

        let host_page_size = crate::page_size();

        assert_eq!(pool.table_size, host_page_size);
        assert_eq!(pool.max_tables, 4);
        assert_eq!(pool.max_instances, 7);
        assert_eq!(pool.page_size, host_page_size);
        assert_eq!(pool.max_elements, 100);

        let base = pool.mapping.as_ptr() as usize;

        for i in 0..7 {
            let mut iter = pool.get(i);

            for j in 0..4 {
                assert_eq!(
                    iter.next().unwrap() as usize - base,
                    ((i * 4) + j) * pool.table_size
                );
            }

            assert_eq!(iter.next(), None);
        }

        Ok(())
    }

    #[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
    #[test]
    fn test_stack_pool() -> Result<()> {
        let config = PoolingInstanceAllocatorConfig {
            limits: InstanceLimits {
                count: 10,
                ..Default::default()
            },
            stack_size: 1,
            async_stack_zeroing: true,
            ..PoolingInstanceAllocatorConfig::default()
        };
        let pool = StackPool::new(&config)?;

        let native_page_size = crate::page_size();
        assert_eq!(pool.stack_size, 2 * native_page_size);
        assert_eq!(pool.max_instances, 10);
        assert_eq!(pool.page_size, native_page_size);

        assert_eq!(pool.index_allocator.testing_freelist(), []);

        let base = pool.mapping.as_ptr() as usize;

        let mut stacks = Vec::new();
        for i in 0..10 {
            let stack = pool.allocate().expect("allocation should succeed");
            assert_eq!(
                ((stack.top().unwrap() as usize - base) / pool.stack_size) - 1,
                i
            );
            stacks.push(stack);
        }

        assert_eq!(pool.index_allocator.testing_freelist(), []);

        pool.allocate().unwrap_err();

        for stack in stacks {
            pool.deallocate(&stack);
        }

        assert_eq!(
            pool.index_allocator.testing_freelist(),
            [
                SlotId(0),
                SlotId(1),
                SlotId(2),
                SlotId(3),
                SlotId(4),
                SlotId(5),
                SlotId(6),
                SlotId(7),
                SlotId(8),
                SlotId(9)
            ],
        );

        Ok(())
    }

    #[test]
    fn test_pooling_allocator_with_zero_instance_count() {
        let config = PoolingInstanceAllocatorConfig {
            limits: InstanceLimits {
                count: 0,
                ..Default::default()
            },
            ..PoolingInstanceAllocatorConfig::default()
        };
        assert_eq!(
            PoolingInstanceAllocator::new(&config, &Tunables::default(),)
                .map_err(|e| e.to_string())
                .expect_err("expected a failure constructing instance allocator"),
            "the instance count limit cannot be zero"
        );
    }

    #[test]
    fn test_pooling_allocator_with_memory_pages_exceeded() {
        let config = PoolingInstanceAllocatorConfig {
            limits: InstanceLimits {
                count: 1,
                memory_pages: 0x10001,
                ..Default::default()
            },
            ..PoolingInstanceAllocatorConfig::default()
        };
        assert_eq!(
            PoolingInstanceAllocator::new(
                &config,
                &Tunables {
                    static_memory_bound: 1,
                    ..Tunables::default()
                },
            )
            .map_err(|e| e.to_string())
            .expect_err("expected a failure constructing instance allocator"),
            "module memory page limit of 65537 exceeds the maximum of 65536"
        );
    }

    #[test]
    fn test_pooling_allocator_with_reservation_size_exceeded() {
        let config = PoolingInstanceAllocatorConfig {
            limits: InstanceLimits {
                count: 1,
                memory_pages: 2,
                ..Default::default()
            },
            ..PoolingInstanceAllocatorConfig::default()
        };
        let pool = PoolingInstanceAllocator::new(
            &config,
            &Tunables {
                static_memory_bound: 1,
                static_memory_offset_guard_size: 0,
                ..Tunables::default()
            },
        )
        .unwrap();
        assert_eq!(pool.memories.memory_size, 2 * 65536);
    }

    #[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
    #[test]
    fn test_stack_zeroed() -> Result<()> {
        let config = PoolingInstanceAllocatorConfig {
            max_unused_warm_slots: 0,
            limits: InstanceLimits {
                count: 1,
                table_elements: 0,
                memory_pages: 0,
                tables: 0,
                memories: 0,
                ..Default::default()
            },
            stack_size: 128,
            async_stack_zeroing: true,
            ..PoolingInstanceAllocatorConfig::default()
        };
        let allocator = PoolingInstanceAllocator::new(&config, &Tunables::default())?;

        unsafe {
            for _ in 0..255 {
                let stack = allocator.allocate_fiber_stack()?;

                // The stack pointer is at the top, so decrement it first
                let addr = stack.top().unwrap().sub(1);

                assert_eq!(*addr, 0);
                *addr = 1;

                allocator.deallocate_fiber_stack(&stack);
            }
        }

        Ok(())
    }

    #[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
    #[test]
    fn test_stack_unzeroed() -> Result<()> {
        let config = PoolingInstanceAllocatorConfig {
            max_unused_warm_slots: 0,
            limits: InstanceLimits {
                count: 1,
                table_elements: 0,
                memory_pages: 0,
                tables: 0,
                memories: 0,
                ..Default::default()
            },
            stack_size: 128,
            async_stack_zeroing: false,
            ..PoolingInstanceAllocatorConfig::default()
        };
        let allocator = PoolingInstanceAllocator::new(&config, &Tunables::default())?;

        unsafe {
            for i in 0..255 {
                let stack = allocator.allocate_fiber_stack()?;

                // The stack pointer is at the top, so decrement it first
                let addr = stack.top().unwrap().sub(1);

                assert_eq!(*addr, i);
                *addr = i + 1;

                allocator.deallocate_fiber_stack(&stack);
            }
        }

        Ok(())
    }
}