referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! XCM `Junctions`/`InteriorLocation` datatype.

use super::{Junction, Location, NetworkId};
use alloc::sync::Arc;
use codec::{Decode, Encode, MaxEncodedLen};
use core::{mem, ops::Range, result};
use scale_info::TypeInfo;

/// Maximum number of `Junction`s that a `Junctions` can contain.
pub(crate) const MAX_JUNCTIONS: usize = 8;

/// Non-parent junctions that can be constructed, up to the length of 8. This specific `Junctions`
/// implementation uses a Rust `enum` in order to make pattern matching easier.
///
/// Parent junctions cannot be constructed with this type. Refer to `Location` for
/// instructions on constructing parent junctions.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Encode,
	Decode,
	Debug,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub enum Junctions {
	/// The interpreting consensus system.
	Here,
	/// A relative path comprising 1 junction.
	X1(Arc<[Junction; 1]>),
	/// A relative path comprising 2 junctions.
	X2(Arc<[Junction; 2]>),
	/// A relative path comprising 3 junctions.
	X3(Arc<[Junction; 3]>),
	/// A relative path comprising 4 junctions.
	X4(Arc<[Junction; 4]>),
	/// A relative path comprising 5 junctions.
	X5(Arc<[Junction; 5]>),
	/// A relative path comprising 6 junctions.
	X6(Arc<[Junction; 6]>),
	/// A relative path comprising 7 junctions.
	X7(Arc<[Junction; 7]>),
	/// A relative path comprising 8 junctions.
	X8(Arc<[Junction; 8]>),
}

macro_rules! impl_junctions {
	($count:expr, $variant:ident) => {
		impl From<[Junction; $count]> for Junctions {
			fn from(junctions: [Junction; $count]) -> Self {
				Self::$variant(Arc::new(junctions))
			}
		}
		impl PartialEq<[Junction; $count]> for Junctions {
			fn eq(&self, rhs: &[Junction; $count]) -> bool {
				self.as_slice() == rhs
			}
		}
	};
}

impl_junctions!(1, X1);
impl_junctions!(2, X2);
impl_junctions!(3, X3);
impl_junctions!(4, X4);
impl_junctions!(5, X5);
impl_junctions!(6, X6);
impl_junctions!(7, X7);
impl_junctions!(8, X8);

pub struct JunctionsIterator {
	junctions: Junctions,
	range: Range<usize>,
}

impl Iterator for JunctionsIterator {
	type Item = Junction;
	fn next(&mut self) -> Option<Junction> {
		self.junctions.at(self.range.next()?).cloned()
	}
}

impl DoubleEndedIterator for JunctionsIterator {
	fn next_back(&mut self) -> Option<Junction> {
		self.junctions.at(self.range.next_back()?).cloned()
	}
}

pub struct JunctionsRefIterator<'a> {
	junctions: &'a Junctions,
	range: Range<usize>,
}

impl<'a> Iterator for JunctionsRefIterator<'a> {
	type Item = &'a Junction;
	fn next(&mut self) -> Option<&'a Junction> {
		self.junctions.at(self.range.next()?)
	}
}

impl<'a> DoubleEndedIterator for JunctionsRefIterator<'a> {
	fn next_back(&mut self) -> Option<&'a Junction> {
		self.junctions.at(self.range.next_back()?)
	}
}
impl<'a> IntoIterator for &'a Junctions {
	type Item = &'a Junction;
	type IntoIter = JunctionsRefIterator<'a>;
	fn into_iter(self) -> Self::IntoIter {
		JunctionsRefIterator { junctions: self, range: 0..self.len() }
	}
}

impl IntoIterator for Junctions {
	type Item = Junction;
	type IntoIter = JunctionsIterator;
	fn into_iter(self) -> Self::IntoIter {
		JunctionsIterator { range: 0..self.len(), junctions: self }
	}
}

impl Junctions {
	/// Convert `self` into a `Location` containing 0 parents.
	///
	/// Similar to `Into::into`, except that this method can be used in a const evaluation context.
	pub const fn into_location(self) -> Location {
		Location { parents: 0, interior: self }
	}

	/// Convert `self` into a `Location` containing `n` parents.
	///
	/// Similar to `Self::into_location`, with the added ability to specify the number of parent
	/// junctions.
	pub const fn into_exterior(self, n: u8) -> Location {
		Location { parents: n, interior: self }
	}

	/// Casts `self` into a slice containing `Junction`s.
	pub fn as_slice(&self) -> &[Junction] {
		match self {
			Junctions::Here => &[],
			Junctions::X1(ref a) => &a[..],
			Junctions::X2(ref a) => &a[..],
			Junctions::X3(ref a) => &a[..],
			Junctions::X4(ref a) => &a[..],
			Junctions::X5(ref a) => &a[..],
			Junctions::X6(ref a) => &a[..],
			Junctions::X7(ref a) => &a[..],
			Junctions::X8(ref a) => &a[..],
		}
	}

	/// Casts `self` into a mutable slice containing `Junction`s.
	pub fn as_slice_mut(&mut self) -> &mut [Junction] {
		match self {
			Junctions::Here => &mut [],
			Junctions::X1(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X2(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X3(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X4(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X5(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X6(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X7(ref mut a) => &mut Arc::make_mut(a)[..],
			Junctions::X8(ref mut a) => &mut Arc::make_mut(a)[..],
		}
	}

	/// Remove the `NetworkId` value in any `Junction`s.
	pub fn remove_network_id(&mut self) {
		self.for_each_mut(Junction::remove_network_id);
	}

	/// Treating `self` as the universal context, return the location of the local consensus system
	/// from the point of view of the given `target`.
	pub fn invert_target(&self, target: &Location) -> Result<Location, ()> {
		let mut itself = self.clone();
		let mut junctions = Self::Here;
		for _ in 0..target.parent_count() {
			junctions = junctions
				.pushed_front_with(itself.take_last().unwrap_or(Junction::OnlyChild))
				.map_err(|_| ())?;
		}
		let parents = target.interior().len() as u8;
		Ok(Location::new(parents, junctions))
	}

	/// Execute a function `f` on every junction. We use this since we cannot implement a mutable
	/// `Iterator` without unsafe code.
	pub fn for_each_mut(&mut self, x: impl FnMut(&mut Junction)) {
		self.as_slice_mut().iter_mut().for_each(x)
	}

	/// Extract the network ID treating this value as a universal location.
	///
	/// This will return an `Err` if the first item is not a `GlobalConsensus`, which would indicate
	/// that this value is not a universal location.
	pub fn global_consensus(&self) -> Result<NetworkId, ()> {
		if let Some(Junction::GlobalConsensus(network)) = self.first() {
			Ok(*network)
		} else {
			Err(())
		}
	}

	/// Extract the network ID and the interior consensus location, treating this value as a
	/// universal location.
	///
	/// This will return an `Err` if the first item is not a `GlobalConsensus`, which would indicate
	/// that this value is not a universal location.
	pub fn split_global(self) -> Result<(NetworkId, Junctions), ()> {
		match self.split_first() {
			(location, Some(Junction::GlobalConsensus(network))) => Ok((network, location)),
			_ => return Err(()),
		}
	}

	/// Treat `self` as a universal location and the context of `relative`, returning the universal
	/// location of relative.
	///
	/// This will return an error if `relative` has as many (or more) parents than there are
	/// junctions in `self`, implying that relative refers into a different global consensus.
	pub fn within_global(mut self, relative: Location) -> Result<Self, ()> {
		if self.len() <= relative.parent_count() as usize {
			return Err(())
		}
		for _ in 0..relative.parent_count() {
			self.take_last();
		}
		for j in relative.interior() {
			self.push(*j).map_err(|_| ())?;
		}
		Ok(self)
	}

	/// Consumes `self` and returns how `viewer` would address it locally.
	pub fn relative_to(mut self, viewer: &Junctions) -> Location {
		let mut i = 0;
		while match (self.first(), viewer.at(i)) {
			(Some(x), Some(y)) => x == y,
			_ => false,
		} {
			self = self.split_first().0;
			// NOTE: Cannot overflow as loop can only iterate at most `MAX_JUNCTIONS` times.
			i += 1;
		}
		// AUDIT NOTES:
		// - above loop ensures that `i <= viewer.len()`.
		// - `viewer.len()` is at most `MAX_JUNCTIONS`, so won't overflow a `u8`.
		Location::new((viewer.len() - i) as u8, self)
	}

	/// Returns first junction, or `None` if the location is empty.
	pub fn first(&self) -> Option<&Junction> {
		self.as_slice().first()
	}

	/// Returns last junction, or `None` if the location is empty.
	pub fn last(&self) -> Option<&Junction> {
		self.as_slice().last()
	}

	/// Splits off the first junction, returning the remaining suffix (first item in tuple) and the
	/// first element (second item in tuple) or `None` if it was empty.
	pub fn split_first(self) -> (Junctions, Option<Junction>) {
		match self {
			Junctions::Here => (Junctions::Here, None),
			Junctions::X1(xs) => {
				let [a] = *xs;
				(Junctions::Here, Some(a))
			},
			Junctions::X2(xs) => {
				let [a, b] = *xs;
				([b].into(), Some(a))
			},
			Junctions::X3(xs) => {
				let [a, b, c] = *xs;
				([b, c].into(), Some(a))
			},
			Junctions::X4(xs) => {
				let [a, b, c, d] = *xs;
				([b, c, d].into(), Some(a))
			},
			Junctions::X5(xs) => {
				let [a, b, c, d, e] = *xs;
				([b, c, d, e].into(), Some(a))
			},
			Junctions::X6(xs) => {
				let [a, b, c, d, e, f] = *xs;
				([b, c, d, e, f].into(), Some(a))
			},
			Junctions::X7(xs) => {
				let [a, b, c, d, e, f, g] = *xs;
				([b, c, d, e, f, g].into(), Some(a))
			},
			Junctions::X8(xs) => {
				let [a, b, c, d, e, f, g, h] = *xs;
				([b, c, d, e, f, g, h].into(), Some(a))
			},
		}
	}

	/// Splits off the last junction, returning the remaining prefix (first item in tuple) and the
	/// last element (second item in tuple) or `None` if it was empty.
	pub fn split_last(self) -> (Junctions, Option<Junction>) {
		match self {
			Junctions::Here => (Junctions::Here, None),
			Junctions::X1(xs) => {
				let [a] = *xs;
				(Junctions::Here, Some(a))
			},
			Junctions::X2(xs) => {
				let [a, b] = *xs;
				([a].into(), Some(b))
			},
			Junctions::X3(xs) => {
				let [a, b, c] = *xs;
				([a, b].into(), Some(c))
			},
			Junctions::X4(xs) => {
				let [a, b, c, d] = *xs;
				([a, b, c].into(), Some(d))
			},
			Junctions::X5(xs) => {
				let [a, b, c, d, e] = *xs;
				([a, b, c, d].into(), Some(e))
			},
			Junctions::X6(xs) => {
				let [a, b, c, d, e, f] = *xs;
				([a, b, c, d, e].into(), Some(f))
			},
			Junctions::X7(xs) => {
				let [a, b, c, d, e, f, g] = *xs;
				([a, b, c, d, e, f].into(), Some(g))
			},
			Junctions::X8(xs) => {
				let [a, b, c, d, e, f, g, h] = *xs;
				([a, b, c, d, e, f, g].into(), Some(h))
			},
		}
	}

	/// Removes the first element from `self`, returning it (or `None` if it was empty).
	pub fn take_first(&mut self) -> Option<Junction> {
		let mut d = Junctions::Here;
		mem::swap(&mut *self, &mut d);
		let (tail, head) = d.split_first();
		*self = tail;
		head
	}

	/// Removes the last element from `self`, returning it (or `None` if it was empty).
	pub fn take_last(&mut self) -> Option<Junction> {
		let mut d = Junctions::Here;
		mem::swap(&mut *self, &mut d);
		let (head, tail) = d.split_last();
		*self = head;
		tail
	}

	/// Mutates `self` to be appended with `new` or returns an `Err` with `new` if would overflow.
	pub fn push(&mut self, new: impl Into<Junction>) -> result::Result<(), Junction> {
		let new = new.into();
		let mut dummy = Junctions::Here;
		mem::swap(self, &mut dummy);
		match dummy.pushed_with(new) {
			Ok(s) => {
				*self = s;
				Ok(())
			},
			Err((s, j)) => {
				*self = s;
				Err(j)
			},
		}
	}

	/// Mutates `self` to be prepended with `new` or returns an `Err` with `new` if would overflow.
	pub fn push_front(&mut self, new: impl Into<Junction>) -> result::Result<(), Junction> {
		let new = new.into();
		let mut dummy = Junctions::Here;
		mem::swap(self, &mut dummy);
		match dummy.pushed_front_with(new) {
			Ok(s) => {
				*self = s;
				Ok(())
			},
			Err((s, j)) => {
				*self = s;
				Err(j)
			},
		}
	}

	/// Consumes `self` and returns a `Junctions` suffixed with `new`, or an `Err` with the
	/// original value of `self` and `new` in case of overflow.
	pub fn pushed_with(self, new: impl Into<Junction>) -> result::Result<Self, (Self, Junction)> {
		let new = new.into();
		Ok(match self {
			Junctions::Here => [new].into(),
			Junctions::X1(xs) => {
				let [a] = *xs;
				[a, new].into()
			},
			Junctions::X2(xs) => {
				let [a, b] = *xs;
				[a, b, new].into()
			},
			Junctions::X3(xs) => {
				let [a, b, c] = *xs;
				[a, b, c, new].into()
			},
			Junctions::X4(xs) => {
				let [a, b, c, d] = *xs;
				[a, b, c, d, new].into()
			},
			Junctions::X5(xs) => {
				let [a, b, c, d, e] = *xs;
				[a, b, c, d, e, new].into()
			},
			Junctions::X6(xs) => {
				let [a, b, c, d, e, f] = *xs;
				[a, b, c, d, e, f, new].into()
			},
			Junctions::X7(xs) => {
				let [a, b, c, d, e, f, g] = *xs;
				[a, b, c, d, e, f, g, new].into()
			},
			s => Err((s, new))?,
		})
	}

	/// Consumes `self` and returns a `Junctions` prefixed with `new`, or an `Err` with the
	/// original value of `self` and `new` in case of overflow.
	pub fn pushed_front_with(
		self,
		new: impl Into<Junction>,
	) -> result::Result<Self, (Self, Junction)> {
		let new = new.into();
		Ok(match self {
			Junctions::Here => [new].into(),
			Junctions::X1(xs) => {
				let [a] = *xs;
				[new, a].into()
			},
			Junctions::X2(xs) => {
				let [a, b] = *xs;
				[new, a, b].into()
			},
			Junctions::X3(xs) => {
				let [a, b, c] = *xs;
				[new, a, b, c].into()
			},
			Junctions::X4(xs) => {
				let [a, b, c, d] = *xs;
				[new, a, b, c, d].into()
			},
			Junctions::X5(xs) => {
				let [a, b, c, d, e] = *xs;
				[new, a, b, c, d, e].into()
			},
			Junctions::X6(xs) => {
				let [a, b, c, d, e, f] = *xs;
				[new, a, b, c, d, e, f].into()
			},
			Junctions::X7(xs) => {
				let [a, b, c, d, e, f, g] = *xs;
				[new, a, b, c, d, e, f, g].into()
			},
			s => Err((s, new))?,
		})
	}

	/// Mutate `self` so that it is suffixed with `suffix`.
	///
	/// Does not modify `self` and returns `Err` with `suffix` in case of overflow.
	///
	/// # Example
	/// ```rust
	/// # use staging_xcm::v5::{Junctions, Junction::*, Location};
	/// # fn main() {
	/// let mut m = Junctions::from([Parachain(21)]);
	/// assert_eq!(m.append_with([PalletInstance(3)]), Ok(()));
	/// assert_eq!(m, [Parachain(21), PalletInstance(3)]);
	/// # }
	/// ```
	pub fn append_with(&mut self, suffix: impl Into<Junctions>) -> Result<(), Junctions> {
		let suffix = suffix.into();
		if self.len().saturating_add(suffix.len()) > MAX_JUNCTIONS {
			return Err(suffix)
		}
		for j in suffix.into_iter() {
			self.push(j).expect("Already checked the sum of the len()s; qed")
		}
		Ok(())
	}

	/// Returns the number of junctions in `self`.
	pub fn len(&self) -> usize {
		self.as_slice().len()
	}

	/// Returns the junction at index `i`, or `None` if the location doesn't contain that many
	/// elements.
	pub fn at(&self, i: usize) -> Option<&Junction> {
		self.as_slice().get(i)
	}

	/// Returns a mutable reference to the junction at index `i`, or `None` if the location doesn't
	/// contain that many elements.
	pub fn at_mut(&mut self, i: usize) -> Option<&mut Junction> {
		self.as_slice_mut().get_mut(i)
	}

	/// Returns a reference iterator over the junctions.
	pub fn iter(&self) -> JunctionsRefIterator {
		JunctionsRefIterator { junctions: self, range: 0..self.len() }
	}

	/// Ensures that self begins with `prefix` and that it has a single `Junction` item following.
	/// If so, returns a reference to this `Junction` item.
	///
	/// # Example
	/// ```rust
	/// # use staging_xcm::v5::{Junctions, Junction::*};
	/// # fn main() {
	/// let mut m = Junctions::from([Parachain(2), PalletInstance(3), OnlyChild]);
	/// assert_eq!(m.match_and_split(&[Parachain(2), PalletInstance(3)].into()), Some(&OnlyChild));
	/// assert_eq!(m.match_and_split(&[Parachain(2)].into()), None);
	/// # }
	/// ```
	pub fn match_and_split(&self, prefix: &Junctions) -> Option<&Junction> {
		if prefix.len() + 1 != self.len() {
			return None
		}
		for i in 0..prefix.len() {
			if prefix.at(i) != self.at(i) {
				return None
			}
		}
		return self.at(prefix.len())
	}

	pub fn starts_with(&self, prefix: &Junctions) -> bool {
		prefix.len() <= self.len() && prefix.iter().zip(self.iter()).all(|(x, y)| x == y)
	}
}

impl TryFrom<Location> for Junctions {
	type Error = Location;
	fn try_from(x: Location) -> result::Result<Self, Location> {
		if x.parent_count() > 0 {
			Err(x)
		} else {
			Ok(x.interior().clone())
		}
	}
}

impl<T: Into<Junction>> From<T> for Junctions {
	fn from(x: T) -> Self {
		[x.into()].into()
	}
}

impl From<[Junction; 0]> for Junctions {
	fn from(_: [Junction; 0]) -> Self {
		Self::Here
	}
}

impl From<()> for Junctions {
	fn from(_: ()) -> Self {
		Self::Here
	}
}

xcm_procedural::impl_conversion_functions_for_junctions_v5!();

#[cfg(test)]
mod tests {
	use super::{super::prelude::*, *};

	#[test]
	fn inverting_works() {
		let context: InteriorLocation = (Parachain(1000), PalletInstance(42)).into();
		let target = (Parent, PalletInstance(69)).into();
		let expected = (Parent, PalletInstance(42)).into();
		let inverted = context.invert_target(&target).unwrap();
		assert_eq!(inverted, expected);

		let context: InteriorLocation =
			(Parachain(1000), PalletInstance(42), GeneralIndex(1)).into();
		let target = (Parent, Parent, PalletInstance(69), GeneralIndex(2)).into();
		let expected = (Parent, Parent, PalletInstance(42), GeneralIndex(1)).into();
		let inverted = context.invert_target(&target).unwrap();
		assert_eq!(inverted, expected);
	}

	#[test]
	fn relative_to_works() {
		use NetworkId::*;
		assert_eq!(
			Junctions::from([Polkadot.into()]).relative_to(&Junctions::from([Kusama.into()])),
			(Parent, Polkadot).into()
		);
		let base = Junctions::from([Kusama.into(), Parachain(1), PalletInstance(1)]);

		// Ancestors.
		assert_eq!(Here.relative_to(&base), (Parent, Parent, Parent).into());
		assert_eq!(Junctions::from([Kusama.into()]).relative_to(&base), (Parent, Parent).into());
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(1)]).relative_to(&base),
			(Parent,).into()
		);
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(1), PalletInstance(1)]).relative_to(&base),
			Here.into()
		);

		// Ancestors with one child.
		assert_eq!(
			Junctions::from([Polkadot.into()]).relative_to(&base),
			(Parent, Parent, Parent, Polkadot).into()
		);
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(2)]).relative_to(&base),
			(Parent, Parent, Parachain(2)).into()
		);
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(1), PalletInstance(2)]).relative_to(&base),
			(Parent, PalletInstance(2)).into()
		);
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(1), PalletInstance(1), [1u8; 32].into()])
				.relative_to(&base),
			([1u8; 32],).into()
		);

		// Ancestors with grandchildren.
		assert_eq!(
			Junctions::from([Polkadot.into(), Parachain(1)]).relative_to(&base),
			(Parent, Parent, Parent, Polkadot, Parachain(1)).into()
		);
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(2), PalletInstance(1)]).relative_to(&base),
			(Parent, Parent, Parachain(2), PalletInstance(1)).into()
		);
		assert_eq!(
			Junctions::from([Kusama.into(), Parachain(1), PalletInstance(2), [1u8; 32].into()])
				.relative_to(&base),
			(Parent, PalletInstance(2), [1u8; 32]).into()
		);
		assert_eq!(
			Junctions::from([
				Kusama.into(),
				Parachain(1),
				PalletInstance(1),
				[1u8; 32].into(),
				1u128.into()
			])
			.relative_to(&base),
			([1u8; 32], 1u128).into()
		);
	}

	#[test]
	fn global_consensus_works() {
		use NetworkId::*;
		assert_eq!(Junctions::from([Polkadot.into()]).global_consensus(), Ok(Polkadot));
		assert_eq!(Junctions::from([Kusama.into(), 1u64.into()]).global_consensus(), Ok(Kusama));
		assert_eq!(Here.global_consensus(), Err(()));
		assert_eq!(Junctions::from([1u64.into()]).global_consensus(), Err(()));
		assert_eq!(Junctions::from([1u64.into(), Kusama.into()]).global_consensus(), Err(()));
	}

	#[test]
	fn test_conversion() {
		use super::{Junction::*, NetworkId::*};
		let x: Junctions = GlobalConsensus(Polkadot).into();
		assert_eq!(x, Junctions::from([GlobalConsensus(Polkadot)]));
		let x: Junctions = Polkadot.into();
		assert_eq!(x, Junctions::from([GlobalConsensus(Polkadot)]));
		let x: Junctions = (Polkadot, Kusama).into();
		assert_eq!(x, Junctions::from([GlobalConsensus(Polkadot), GlobalConsensus(Kusama)]));
	}

	#[test]
	fn encode_decode_junctions_works() {
		let original = Junctions::from([
			Polkadot.into(),
			Kusama.into(),
			1u64.into(),
			GlobalConsensus(Polkadot),
			Parachain(123),
			PalletInstance(45),
		]);
		let encoded = original.encode();
		assert_eq!(encoded, &[6, 9, 2, 9, 3, 2, 0, 4, 9, 2, 0, 237, 1, 4, 45]);
		let decoded = Junctions::decode(&mut &encoded[..]).unwrap();
		assert_eq!(decoded, original);
	}
}