referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

use codec::Encode;
use net_protocol::{filter_by_peer_version, peer_set::ProtocolVersion};

use polkadot_node_network_protocol::{
	self as net_protocol,
	grid_topology::{GridNeighbors, RequiredRouting, SessionBoundGridTopologyStorage},
	peer_set::{IsAuthority, PeerSet, ValidationVersion},
	v1::{self as protocol_v1, StatementMetadata},
	v2 as protocol_v2, v3 as protocol_v3, IfDisconnected, PeerId, UnifiedReputationChange as Rep,
	Versioned, View,
};
use polkadot_node_primitives::{
	SignedFullStatement, Statement, StatementWithPVD, UncheckedSignedFullStatement,
};
use polkadot_node_subsystem_util::{
	self as util, rand, reputation::ReputationAggregator, MIN_GOSSIP_PEERS,
};

use polkadot_node_subsystem::{
	messages::{CandidateBackingMessage, NetworkBridgeEvent, NetworkBridgeTxMessage},
	overseer, ActivatedLeaf, StatementDistributionSenderTrait,
};
use polkadot_primitives::{
	vstaging::CommittedCandidateReceiptV2 as CommittedCandidateReceipt, AuthorityDiscoveryId,
	CandidateHash, CompactStatement, Hash, Id as ParaId, IndexedVec, OccupiedCoreAssumption,
	PersistedValidationData, SignedStatement, SigningContext, UncheckedSignedStatement,
	ValidatorId, ValidatorIndex, ValidatorSignature,
};

use futures::{
	channel::{mpsc, oneshot},
	future::RemoteHandle,
	prelude::*,
};
use indexmap::{map::Entry as IEntry, IndexMap};
use rand::Rng;
use sp_keystore::KeystorePtr;
use util::runtime::RuntimeInfo;

use std::collections::{hash_map::Entry, HashMap, HashSet, VecDeque};

use crate::error::{Error, JfyiError, JfyiErrorResult, Result};

/// Background task logic for requesting of large statements.
mod requester;
use requester::fetch;

/// Background task logic for responding for large statements.
mod responder;

use crate::{metrics::Metrics, LOG_TARGET};

pub use requester::RequesterMessage;
pub use responder::{respond, ResponderMessage};

#[cfg(test)]
mod tests;

const COST_UNEXPECTED_STATEMENT: Rep = Rep::CostMinor("Unexpected Statement");
const COST_UNEXPECTED_STATEMENT_MISSING_KNOWLEDGE: Rep =
	Rep::CostMinor("Unexpected Statement, missing knowlege for relay parent");
const COST_UNEXPECTED_STATEMENT_UNKNOWN_CANDIDATE: Rep =
	Rep::CostMinor("Unexpected Statement, unknown candidate");
const COST_UNEXPECTED_STATEMENT_REMOTE: Rep =
	Rep::CostMinor("Unexpected Statement, remote not allowed");

const COST_FETCH_FAIL: Rep =
	Rep::CostMinor("Requesting `CommittedCandidateReceipt` from peer failed");
const COST_INVALID_SIGNATURE: Rep = Rep::CostMajor("Invalid Statement Signature");
const COST_WRONG_HASH: Rep = Rep::CostMajor("Received candidate had wrong hash");
const COST_DUPLICATE_STATEMENT: Rep =
	Rep::CostMajorRepeated("Statement sent more than once by peer");
const COST_APPARENT_FLOOD: Rep = Rep::Malicious("Peer appears to be flooding us with statements");

const BENEFIT_VALID_STATEMENT: Rep = Rep::BenefitMajor("Peer provided a valid statement");
const BENEFIT_VALID_STATEMENT_FIRST: Rep =
	Rep::BenefitMajorFirst("Peer was the first to provide a valid statement");
const BENEFIT_VALID_RESPONSE: Rep =
	Rep::BenefitMajor("Peer provided a valid large statement response");

/// The maximum amount of candidates each validator is allowed to second at any relay-parent.
/// Short for "Validator Candidate Threshold".
///
/// This is the amount of candidates we keep per validator at any relay-parent.
/// Typically we will only keep 1, but when a validator equivocates we will need to track 2.
const VC_THRESHOLD: usize = 2;

/// Large statements should be rare.
const MAX_LARGE_STATEMENTS_PER_SENDER: usize = 20;

/// Overall state of the legacy-v1 portion of the subsystem.
pub(crate) struct State {
	peers: HashMap<PeerId, PeerData>,
	topology_storage: SessionBoundGridTopologyStorage,
	authorities: HashMap<AuthorityDiscoveryId, PeerId>,
	active_heads: HashMap<Hash, ActiveHeadData>,
	recent_outdated_heads: RecentOutdatedHeads,
	runtime: RuntimeInfo,
}

impl State {
	/// Create a new state.
	pub(crate) fn new(keystore: KeystorePtr) -> Self {
		State {
			peers: HashMap::new(),
			topology_storage: Default::default(),
			authorities: HashMap::new(),
			active_heads: HashMap::new(),
			recent_outdated_heads: RecentOutdatedHeads::default(),
			runtime: RuntimeInfo::new(Some(keystore)),
		}
	}

	/// Query whether the state contains some relay-parent.
	pub(crate) fn contains_relay_parent(&self, relay_parent: &Hash) -> bool {
		self.active_heads.contains_key(relay_parent)
	}
}

#[derive(Default)]
struct RecentOutdatedHeads {
	buf: VecDeque<Hash>,
}

impl RecentOutdatedHeads {
	fn note_outdated(&mut self, hash: Hash) {
		const MAX_BUF_LEN: usize = 10;

		self.buf.push_back(hash);

		while self.buf.len() > MAX_BUF_LEN {
			let _ = self.buf.pop_front();
		}
	}

	fn is_recent_outdated(&self, hash: &Hash) -> bool {
		self.buf.contains(hash)
	}
}

/// Tracks our impression of a single peer's view of the candidates a validator has seconded
/// for a given relay-parent.
///
/// It is expected to receive at most `VC_THRESHOLD` from us and be aware of at most `VC_THRESHOLD`
/// via other means.
#[derive(Default)]
struct VcPerPeerTracker {
	local_observed: arrayvec::ArrayVec<CandidateHash, VC_THRESHOLD>,
	remote_observed: arrayvec::ArrayVec<CandidateHash, VC_THRESHOLD>,
}

impl VcPerPeerTracker {
	/// Note that the remote should now be aware that a validator has seconded a given candidate (by
	/// hash) based on a message that we have sent it from our local pool.
	fn note_local(&mut self, h: CandidateHash) {
		if !note_hash(&mut self.local_observed, h) {
			gum::warn!(
				target: LOG_TARGET,
				"Statement distribution is erroneously attempting to distribute more \
				than {} candidate(s) per validator index. Ignoring",
				VC_THRESHOLD,
			);
		}
	}

	/// Note that the remote should now be aware that a validator has seconded a given candidate (by
	/// hash) based on a message that it has sent us.
	///
	/// Returns `true` if the peer was allowed to send us such a message, `false` otherwise.
	fn note_remote(&mut self, h: CandidateHash) -> bool {
		note_hash(&mut self.remote_observed, h)
	}

	/// Returns `true` if the peer is allowed to send us such a message, `false` otherwise.
	fn is_wanted_candidate(&self, h: &CandidateHash) -> bool {
		!self.remote_observed.contains(h) && !self.remote_observed.is_full()
	}
}

fn note_hash(
	observed: &mut arrayvec::ArrayVec<CandidateHash, VC_THRESHOLD>,
	h: CandidateHash,
) -> bool {
	if observed.contains(&h) {
		return true
	}

	observed.try_push(h).is_ok()
}

/// knowledge that a peer has about goings-on in a relay parent.
#[derive(Default)]
struct PeerRelayParentKnowledge {
	/// candidates that the peer is aware of because we sent statements to it. This indicates that
	/// we can send other statements pertaining to that candidate.
	sent_candidates: HashSet<CandidateHash>,
	/// candidates that peer is aware of, because we received statements from it.
	received_candidates: HashSet<CandidateHash>,
	/// fingerprints of all statements a peer should be aware of: those that
	/// were sent to the peer by us.
	sent_statements: HashSet<(CompactStatement, ValidatorIndex)>,
	/// fingerprints of all statements a peer should be aware of: those that
	/// were sent to us by the peer.
	received_statements: HashSet<(CompactStatement, ValidatorIndex)>,
	/// How many candidates this peer is aware of for each given validator index.
	seconded_counts: HashMap<ValidatorIndex, VcPerPeerTracker>,
	/// How many statements we've received for each candidate that we're aware of.
	received_message_count: HashMap<CandidateHash, usize>,

	/// How many large statements this peer already sent us.
	///
	/// Flood protection for large statements is rather hard and as soon as we get
	/// `https://github.com/paritytech/polkadot/issues/2979` implemented also no longer necessary.
	/// Reason: We keep messages around until we fetched the payload, but if a node makes up
	/// statements and never provides the data, we will keep it around for the slot duration. Not
	/// even signature checking would help, as the sender, if a validator, can just sign arbitrary
	/// invalid statements and will not face any consequences as long as it won't provide the
	/// payload.
	///
	/// Quick and temporary fix, only accept `MAX_LARGE_STATEMENTS_PER_SENDER` per connected node.
	///
	/// Large statements should be rare, if they were not, we would run into problems anyways, as
	/// we would not be able to distribute them in a timely manner. Therefore
	/// `MAX_LARGE_STATEMENTS_PER_SENDER` can be set to a relatively small number. It is also not
	/// per candidate hash, but in total as candidate hashes can be made up, as illustrated above.
	///
	/// An attacker could still try to fill up our memory, by repeatedly disconnecting and
	/// connecting again with new peer ids, but we assume that the resulting effective bandwidth
	/// for such an attack would be too low.
	large_statement_count: usize,

	/// We have seen a message that that is unexpected from this peer, so note this fact
	/// and stop subsequent logging and peer reputation flood.
	unexpected_count: usize,
}

impl PeerRelayParentKnowledge {
	/// Updates our view of the peer's knowledge with this statement's fingerprint based
	/// on something that we would like to send to the peer.
	///
	/// NOTE: assumes `self.can_send` returned true before this call.
	///
	/// Once the knowledge has incorporated a statement, it cannot be incorporated again.
	///
	/// This returns `true` if this is the first time the peer has become aware of a
	/// candidate with the given hash.
	fn send(&mut self, fingerprint: &(CompactStatement, ValidatorIndex)) -> bool {
		debug_assert!(
			self.can_send(fingerprint),
			"send is only called after `can_send` returns true; qed",
		);

		let new_known = match fingerprint.0 {
			CompactStatement::Seconded(ref h) => {
				self.seconded_counts.entry(fingerprint.1).or_default().note_local(*h);

				let was_known = self.is_known_candidate(h);
				self.sent_candidates.insert(*h);
				!was_known
			},
			CompactStatement::Valid(_) => false,
		};

		self.sent_statements.insert(fingerprint.clone());

		new_known
	}

	/// This returns `true` if the peer cannot accept this statement, without altering internal
	/// state, `false` otherwise.
	fn can_send(&self, fingerprint: &(CompactStatement, ValidatorIndex)) -> bool {
		let already_known = self.sent_statements.contains(fingerprint) ||
			self.received_statements.contains(fingerprint);

		if already_known {
			return false
		}

		match fingerprint.0 {
			CompactStatement::Valid(ref h) => {
				// The peer can only accept Valid statements for which it is aware
				// of the corresponding candidate.
				self.is_known_candidate(h)
			},
			CompactStatement::Seconded(_) => true,
		}
	}

	/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based
	/// on a message we are receiving from the peer.
	///
	/// Provide the maximum message count that we can receive per candidate. In practice we should
	/// not receive more statements for any one candidate than there are members in the group
	/// assigned to that para, but this maximum needs to be lenient to account for equivocations
	/// that may be cross-group. As such, a maximum of 2 * `n_validators` is recommended.
	///
	/// This returns an error if the peer should not have sent us this message according to protocol
	/// rules for flood protection.
	///
	/// If this returns `Ok`, the internal state has been altered. After `receive`ing a new
	/// candidate, we are then cleared to send the peer further statements about that candidate.
	///
	/// This returns `Ok(true)` if this is the first time the peer has become aware of a
	/// candidate with given hash.
	fn receive(
		&mut self,
		fingerprint: &(CompactStatement, ValidatorIndex),
		max_message_count: usize,
	) -> std::result::Result<bool, Rep> {
		// We don't check `sent_statements` because a statement could be in-flight from both
		// sides at the same time.
		if self.received_statements.contains(fingerprint) {
			return Err(COST_DUPLICATE_STATEMENT)
		}

		let (candidate_hash, fresh) = match fingerprint.0 {
			CompactStatement::Seconded(ref h) => {
				let allowed_remote = self
					.seconded_counts
					.entry(fingerprint.1)
					.or_insert_with(Default::default)
					.note_remote(*h);

				if !allowed_remote {
					return Err(COST_UNEXPECTED_STATEMENT_REMOTE)
				}

				(h, !self.is_known_candidate(h))
			},
			CompactStatement::Valid(ref h) => {
				if !self.is_known_candidate(h) {
					return Err(COST_UNEXPECTED_STATEMENT_UNKNOWN_CANDIDATE)
				}

				(h, false)
			},
		};

		{
			let received_per_candidate =
				self.received_message_count.entry(*candidate_hash).or_insert(0);

			if *received_per_candidate >= max_message_count {
				return Err(COST_APPARENT_FLOOD)
			}

			*received_per_candidate += 1;
		}

		self.received_statements.insert(fingerprint.clone());
		self.received_candidates.insert(*candidate_hash);
		Ok(fresh)
	}

	/// Note a received large statement metadata.
	fn receive_large_statement(&mut self) -> std::result::Result<(), Rep> {
		if self.large_statement_count >= MAX_LARGE_STATEMENTS_PER_SENDER {
			return Err(COST_APPARENT_FLOOD)
		}
		self.large_statement_count += 1;
		Ok(())
	}

	/// This method does the same checks as `receive` without modifying the internal state.
	/// Returns an error if the peer should not have sent us this message according to protocol
	/// rules for flood protection.
	fn check_can_receive(
		&self,
		fingerprint: &(CompactStatement, ValidatorIndex),
		max_message_count: usize,
	) -> std::result::Result<(), Rep> {
		// We don't check `sent_statements` because a statement could be in-flight from both
		// sides at the same time.
		if self.received_statements.contains(fingerprint) {
			return Err(COST_DUPLICATE_STATEMENT)
		}

		let candidate_hash = match fingerprint.0 {
			CompactStatement::Seconded(ref h) => {
				let allowed_remote = self
					.seconded_counts
					.get(&fingerprint.1)
					.map_or(true, |r| r.is_wanted_candidate(h));

				if !allowed_remote {
					return Err(COST_UNEXPECTED_STATEMENT_REMOTE)
				}

				h
			},
			CompactStatement::Valid(ref h) => {
				if !self.is_known_candidate(&h) {
					return Err(COST_UNEXPECTED_STATEMENT_UNKNOWN_CANDIDATE)
				}

				h
			},
		};

		let received_per_candidate = self.received_message_count.get(candidate_hash).unwrap_or(&0);

		if *received_per_candidate >= max_message_count {
			Err(COST_APPARENT_FLOOD)
		} else {
			Ok(())
		}
	}

	/// Check for candidates that the peer is aware of. This indicates that we can
	/// send other statements pertaining to that candidate.
	fn is_known_candidate(&self, candidate: &CandidateHash) -> bool {
		self.sent_candidates.contains(candidate) || self.received_candidates.contains(candidate)
	}
}

pub struct PeerData {
	view: View,
	protocol_version: ValidationVersion,
	view_knowledge: HashMap<Hash, PeerRelayParentKnowledge>,
	/// Peer might be known as authority with the given ids.
	maybe_authority: Option<HashSet<AuthorityDiscoveryId>>,
}

impl PeerData {
	/// Updates our view of the peer's knowledge with this statement's fingerprint based
	/// on something that we would like to send to the peer.
	///
	/// NOTE: assumes `self.can_send` returned true before this call.
	///
	/// Once the knowledge has incorporated a statement, it cannot be incorporated again.
	///
	/// This returns `true` if this is the first time the peer has become aware of a
	/// candidate with the given hash.
	fn send(
		&mut self,
		relay_parent: &Hash,
		fingerprint: &(CompactStatement, ValidatorIndex),
	) -> bool {
		debug_assert!(
			self.can_send(relay_parent, fingerprint),
			"send is only called after `can_send` returns true; qed",
		);
		self.view_knowledge
			.get_mut(relay_parent)
			.expect("send is only called after `can_send` returns true; qed")
			.send(fingerprint)
	}

	/// This returns `None` if the peer cannot accept this statement, without altering internal
	/// state.
	fn can_send(
		&self,
		relay_parent: &Hash,
		fingerprint: &(CompactStatement, ValidatorIndex),
	) -> bool {
		self.view_knowledge.get(relay_parent).map_or(false, |k| k.can_send(fingerprint))
	}

	/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based
	/// on a message we are receiving from the peer.
	///
	/// Provide the maximum message count that we can receive per candidate. In practice we should
	/// not receive more statements for any one candidate than there are members in the group
	/// assigned to that para, but this maximum needs to be lenient to account for equivocations
	/// that may be cross-group. As such, a maximum of 2 * `n_validators` is recommended.
	///
	/// This returns an error if the peer should not have sent us this message according to protocol
	/// rules for flood protection.
	///
	/// If this returns `Ok`, the internal state has been altered. After `receive`ing a new
	/// candidate, we are then cleared to send the peer further statements about that candidate.
	///
	/// This returns `Ok(true)` if this is the first time the peer has become aware of a
	/// candidate with given hash.
	fn receive(
		&mut self,
		relay_parent: &Hash,
		fingerprint: &(CompactStatement, ValidatorIndex),
		max_message_count: usize,
	) -> std::result::Result<bool, Rep> {
		self.view_knowledge
			.get_mut(relay_parent)
			.ok_or(COST_UNEXPECTED_STATEMENT_MISSING_KNOWLEDGE)?
			.receive(fingerprint, max_message_count)
	}

	/// This method does the same checks as `receive` without modifying the internal state.
	/// Returns an error if the peer should not have sent us this message according to protocol
	/// rules for flood protection.
	fn check_can_receive(
		&self,
		relay_parent: &Hash,
		fingerprint: &(CompactStatement, ValidatorIndex),
		max_message_count: usize,
	) -> std::result::Result<(), Rep> {
		self.view_knowledge
			.get(relay_parent)
			.ok_or(COST_UNEXPECTED_STATEMENT_MISSING_KNOWLEDGE)?
			.check_can_receive(fingerprint, max_message_count)
	}

	/// Receive a notice about out of view statement and returns the value of the old flag
	fn receive_unexpected(&mut self, relay_parent: &Hash) -> usize {
		self.view_knowledge
			.get_mut(relay_parent)
			.map_or(0_usize, |relay_parent_peer_knowledge| {
				let old = relay_parent_peer_knowledge.unexpected_count;
				relay_parent_peer_knowledge.unexpected_count += 1_usize;
				old
			})
	}

	/// Basic flood protection for large statements.
	fn receive_large_statement(&mut self, relay_parent: &Hash) -> std::result::Result<(), Rep> {
		self.view_knowledge
			.get_mut(relay_parent)
			.ok_or(COST_UNEXPECTED_STATEMENT_MISSING_KNOWLEDGE)?
			.receive_large_statement()
	}
}

// A statement stored while a relay chain head is active.
#[derive(Debug, Copy, Clone)]
struct StoredStatement<'a> {
	comparator: &'a StoredStatementComparator,
	statement: &'a SignedFullStatement,
}

// A value used for comparison of stored statements to each other.
//
// The compact version of the statement, the validator index, and the signature of the validator
// is enough to differentiate between all types of equivocations, as long as the signature is
// actually checked to be valid. The same statement with 2 signatures and 2 statements with
// different (or same) signatures wll all be correctly judged to be unequal with this comparator.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
struct StoredStatementComparator {
	compact: CompactStatement,
	validator_index: ValidatorIndex,
	signature: ValidatorSignature,
}

impl<'a> From<(&'a StoredStatementComparator, &'a SignedFullStatement)> for StoredStatement<'a> {
	fn from(
		(comparator, statement): (&'a StoredStatementComparator, &'a SignedFullStatement),
	) -> Self {
		Self { comparator, statement }
	}
}

impl<'a> StoredStatement<'a> {
	fn compact(&self) -> &'a CompactStatement {
		&self.comparator.compact
	}

	fn fingerprint(&self) -> (CompactStatement, ValidatorIndex) {
		(self.comparator.compact.clone(), self.statement.validator_index())
	}
}

#[derive(Debug)]
enum NotedStatement<'a> {
	NotUseful,
	Fresh(StoredStatement<'a>),
	UsefulButKnown,
}

/// Large statement fetching status.
enum LargeStatementStatus {
	/// We are currently fetching the statement data from a remote peer. We keep a list of other
	/// nodes claiming to have that data and will fallback on them.
	Fetching(FetchingInfo),
	/// Statement data is fetched or we got it locally via `StatementDistributionMessage::Share`.
	FetchedOrShared(CommittedCandidateReceipt),
}

/// Info about a fetch in progress.
struct FetchingInfo {
	/// All peers that send us a `LargeStatement` or a `Valid` statement for the given
	/// `CandidateHash`, together with their originally sent messages.
	///
	/// We use an `IndexMap` here to preserve the ordering of peers sending us messages. This is
	/// desirable because we reward first sending peers with reputation.
	available_peers: IndexMap<PeerId, Vec<net_protocol::StatementDistributionMessage>>,
	/// Peers left to try in case the background task needs it.
	peers_to_try: Vec<PeerId>,
	/// Sender for sending fresh peers to the fetching task in case of failure.
	peer_sender: Option<oneshot::Sender<Vec<PeerId>>>,
	/// Task taking care of the request.
	///
	/// Will be killed once dropped.
	#[allow(dead_code)]
	fetching_task: RemoteHandle<()>,
}

#[derive(Debug, PartialEq, Eq)]
enum DeniedStatement {
	NotUseful,
	UsefulButKnown,
}

pub(crate) struct ActiveHeadData {
	/// All candidates we are aware of for this head, keyed by hash.
	candidates: HashSet<CandidateHash>,
	/// Persisted validation data cache.
	cached_validation_data: HashMap<ParaId, PersistedValidationData>,
	/// Stored statements for circulation to peers.
	///
	/// These are iterable in insertion order, and `Seconded` statements are always
	/// accepted before dependent statements.
	statements: IndexMap<StoredStatementComparator, SignedFullStatement>,
	/// Large statements we are waiting for with associated meta data.
	waiting_large_statements: HashMap<CandidateHash, LargeStatementStatus>,
	/// The parachain validators at the head's child session index.
	validators: IndexedVec<ValidatorIndex, ValidatorId>,
	/// The current session index of this fork.
	session_index: sp_staking::SessionIndex,
	/// How many `Seconded` statements we've seen per validator.
	seconded_counts: HashMap<ValidatorIndex, usize>,
}

impl ActiveHeadData {
	fn new(
		validators: IndexedVec<ValidatorIndex, ValidatorId>,
		session_index: sp_staking::SessionIndex,
	) -> Self {
		ActiveHeadData {
			candidates: Default::default(),
			cached_validation_data: Default::default(),
			statements: Default::default(),
			waiting_large_statements: Default::default(),
			validators,
			session_index,
			seconded_counts: Default::default(),
		}
	}

	/// Fetches the `PersistedValidationData` from the runtime, assuming
	/// that the core is free. The relay parent must match that of the active
	/// head.
	async fn fetch_persisted_validation_data<Sender>(
		&mut self,
		sender: &mut Sender,
		relay_parent: Hash,
		para_id: ParaId,
	) -> Result<Option<&PersistedValidationData>>
	where
		Sender: StatementDistributionSenderTrait,
	{
		if let Entry::Vacant(entry) = self.cached_validation_data.entry(para_id) {
			let persisted_validation_data =
				polkadot_node_subsystem_util::request_persisted_validation_data(
					relay_parent,
					para_id,
					OccupiedCoreAssumption::Free,
					sender,
				)
				.await
				.await
				.map_err(Error::RuntimeApiUnavailable)?
				.map_err(|err| Error::FetchPersistedValidationData(para_id, err))?;

			match persisted_validation_data {
				Some(pvd) => entry.insert(pvd),
				None => return Ok(None),
			};
		}

		Ok(self.cached_validation_data.get(&para_id))
	}

	/// Note the given statement.
	///
	/// If it was not already known and can be accepted,  returns `NotedStatement::Fresh`,
	/// with a handle to the statement.
	///
	/// If it can be accepted, but we already know it, returns `NotedStatement::UsefulButKnown`.
	///
	/// We accept up to `VC_THRESHOLD` (2 at time of writing) `Seconded` statements
	/// per validator. These will be the first ones we see. The statement is assumed
	/// to have been checked, including that the validator index is not out-of-bounds and
	/// the signature is valid.
	///
	/// Any other statements or those that reference a candidate we are not aware of cannot be
	/// accepted and will return `NotedStatement::NotUseful`.
	fn note_statement(&mut self, statement: SignedFullStatement) -> NotedStatement {
		let validator_index = statement.validator_index();
		let comparator = StoredStatementComparator {
			compact: statement.payload().to_compact(),
			validator_index,
			signature: statement.signature().clone(),
		};

		match comparator.compact {
			CompactStatement::Seconded(h) => {
				let seconded_so_far = self.seconded_counts.entry(validator_index).or_insert(0);
				if *seconded_so_far >= VC_THRESHOLD {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						?statement,
						"Extra statement is ignored"
					);
					return NotedStatement::NotUseful
				}

				self.candidates.insert(h);
				if let Some(old) = self.statements.insert(comparator.clone(), statement) {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						statement = ?old,
						"Known statement"
					);
					NotedStatement::UsefulButKnown
				} else {
					*seconded_so_far += 1;

					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						statement = ?self.statements.last().expect("Just inserted").1,
						"Noted new statement"
					);
					// This will always return `Some` because it was just inserted.
					let key_value = self
						.statements
						.get_key_value(&comparator)
						.expect("Statement was just inserted; qed");

					NotedStatement::Fresh(key_value.into())
				}
			},
			CompactStatement::Valid(h) => {
				if !self.candidates.contains(&h) {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						?statement,
						"Statement for unknown candidate"
					);
					return NotedStatement::NotUseful
				}

				if let Some(old) = self.statements.insert(comparator.clone(), statement) {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						statement = ?old,
						"Known statement"
					);
					NotedStatement::UsefulButKnown
				} else {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						statement = ?self.statements.last().expect("Just inserted").1,
						"Noted new statement"
					);
					// This will always return `Some` because it was just inserted.
					NotedStatement::Fresh(
						self.statements
							.get_key_value(&comparator)
							.expect("Statement was just inserted; qed")
							.into(),
					)
				}
			},
		}
	}

	/// Returns an error if the statement is already known or not useful
	/// without modifying the internal state.
	fn check_useful_or_unknown(
		&self,
		statement: &UncheckedSignedStatement,
	) -> std::result::Result<(), DeniedStatement> {
		let validator_index = statement.unchecked_validator_index();
		let compact = statement.unchecked_payload();
		let comparator = StoredStatementComparator {
			compact: compact.clone(),
			validator_index,
			signature: statement.unchecked_signature().clone(),
		};

		match compact {
			CompactStatement::Seconded(_) => {
				let seconded_so_far = self.seconded_counts.get(&validator_index).unwrap_or(&0);
				if *seconded_so_far >= VC_THRESHOLD {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						?statement,
						"Extra statement is ignored",
					);
					return Err(DeniedStatement::NotUseful)
				}

				if self.statements.contains_key(&comparator) {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						?statement,
						"Known statement",
					);
					return Err(DeniedStatement::UsefulButKnown)
				}
			},
			CompactStatement::Valid(h) => {
				if !self.candidates.contains(&h) {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						?statement,
						"Statement for unknown candidate",
					);
					return Err(DeniedStatement::NotUseful)
				}

				if self.statements.contains_key(&comparator) {
					gum::trace!(
						target: LOG_TARGET,
						?validator_index,
						?statement,
						"Known statement",
					);
					return Err(DeniedStatement::UsefulButKnown)
				}
			},
		}
		Ok(())
	}

	/// Get an iterator over all statements for the active head. Seconded statements come first.
	fn statements(&self) -> impl Iterator<Item = StoredStatement<'_>> + '_ {
		self.statements.iter().map(Into::into)
	}

	/// Get an iterator over all statements for the active head that are for a particular candidate.
	fn statements_about(
		&self,
		candidate_hash: CandidateHash,
	) -> impl Iterator<Item = StoredStatement<'_>> + '_ {
		self.statements()
			.filter(move |s| s.compact().candidate_hash() == &candidate_hash)
	}
}

/// Check a statement signature under this parent hash.
fn check_statement_signature(
	head: &ActiveHeadData,
	relay_parent: Hash,
	statement: UncheckedSignedStatement,
) -> std::result::Result<SignedStatement, UncheckedSignedStatement> {
	let signing_context =
		SigningContext { session_index: head.session_index, parent_hash: relay_parent };

	head.validators
		.get(statement.unchecked_validator_index())
		.ok_or_else(|| statement.clone())
		.and_then(|v| statement.try_into_checked(&signing_context, v))
}

/// Places the statement in storage if it is new, and then
/// circulates the statement to all peers who have not seen it yet, and
/// sends all statements dependent on that statement to peers who could previously not receive
/// them but now can.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn circulate_statement_and_dependents<Context>(
	topology_store: &SessionBoundGridTopologyStorage,
	peers: &mut HashMap<PeerId, PeerData>,
	active_heads: &mut HashMap<Hash, ActiveHeadData>,
	ctx: &mut Context,
	relay_parent: Hash,
	statement: SignedFullStatement,
	priority_peers: Vec<PeerId>,
	metrics: &Metrics,
	rng: &mut impl rand::Rng,
) {
	let active_head = match active_heads.get_mut(&relay_parent) {
		Some(res) => res,
		None => return,
	};

	let topology = topology_store
		.get_topology_or_fallback(active_head.session_index)
		.local_grid_neighbors();
	// First circulate the statement directly to all peers needing it.
	// The borrow of `active_head` needs to encompass only this (Rust) statement.
	let outputs: Option<(CandidateHash, Vec<PeerId>)> = {
		match active_head.note_statement(statement) {
			NotedStatement::Fresh(stored) => Some((
				*stored.compact().candidate_hash(),
				circulate_statement(
					RequiredRouting::GridXY,
					topology,
					peers,
					ctx,
					relay_parent,
					stored,
					priority_peers,
					metrics,
					rng,
				)
				.await,
			)),
			_ => None,
		}
	};

	// Now send dependent statements to all peers needing them, if any.
	if let Some((candidate_hash, peers_needing_dependents)) = outputs {
		for peer in peers_needing_dependents {
			if let Some(peer_data) = peers.get_mut(&peer) {
				// defensive: the peer data should always be some because the iterator
				// of peers is derived from the set of peers.
				send_statements_about(
					peer,
					peer_data,
					ctx,
					relay_parent,
					candidate_hash,
					&*active_head,
					metrics,
				)
				.await;
			}
		}
	}
}

/// Create a network message from a given statement.
fn v1_statement_message(
	relay_parent: Hash,
	statement: SignedFullStatement,
	metrics: &Metrics,
) -> protocol_v1::StatementDistributionMessage {
	let (is_large, size) = is_statement_large(&statement);
	if let Some(size) = size {
		metrics.on_created_message(size);
	}

	if is_large {
		protocol_v1::StatementDistributionMessage::LargeStatement(StatementMetadata {
			relay_parent,
			candidate_hash: statement.payload().candidate_hash(),
			signed_by: statement.validator_index(),
			signature: statement.signature().clone(),
		})
	} else {
		protocol_v1::StatementDistributionMessage::Statement(relay_parent, statement.into())
	}
}

/// Check whether a statement should be treated as large statement.
///
/// Also report size of statement - if it is a `Seconded` statement, otherwise `None`.
fn is_statement_large(statement: &SignedFullStatement) -> (bool, Option<usize>) {
	match &statement.payload() {
		Statement::Seconded(committed) => {
			let size = statement.as_unchecked().encoded_size();
			// Runtime upgrades will always be large and even if not - no harm done.
			if committed.commitments.new_validation_code.is_some() {
				return (true, Some(size))
			}

			// Half max size seems to be a good threshold to start not using notifications:
			let threshold =
				PeerSet::Validation.get_max_notification_size(IsAuthority::Yes) as usize / 2;

			(size >= threshold, Some(size))
		},
		Statement::Valid(_) => (false, None),
	}
}

/// Circulates a statement to all peers who have not seen it yet, and returns
/// an iterator over peers who need to have dependent statements sent.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn circulate_statement<'a, Context>(
	required_routing: RequiredRouting,
	topology: &GridNeighbors,
	peers: &mut HashMap<PeerId, PeerData>,
	ctx: &mut Context,
	relay_parent: Hash,
	stored: StoredStatement<'a>,
	mut priority_peers: Vec<PeerId>,
	metrics: &Metrics,
	rng: &mut impl rand::Rng,
) -> Vec<PeerId> {
	let fingerprint = stored.fingerprint();

	let mut peers_to_send: Vec<PeerId> = peers
		.iter()
		.filter_map(
			|(peer, data)| {
				if data.can_send(&relay_parent, &fingerprint) {
					Some(*peer)
				} else {
					None
				}
			},
		)
		.collect();

	let good_peers: HashSet<&PeerId> = peers_to_send.iter().collect();
	// Only take priority peers we can send data to:
	priority_peers.retain(|p| good_peers.contains(p));

	// Avoid duplicates:
	let priority_set: HashSet<&PeerId> = priority_peers.iter().collect();
	peers_to_send.retain(|p| !priority_set.contains(p));

	util::choose_random_subset_with_rng(
		|e| topology.route_to_peer(required_routing, e),
		&mut peers_to_send,
		rng,
		MIN_GOSSIP_PEERS,
	);

	// We don't want to use less peers, than we would without any priority peers:
	let min_size = std::cmp::max(peers_to_send.len(), MIN_GOSSIP_PEERS);
	// Make set full:
	let needed_peers = min_size as i64 - priority_peers.len() as i64;
	if needed_peers > 0 {
		peers_to_send.truncate(needed_peers as usize);
		// Order important here - priority peers are placed first, so will be sent first.
		// This gives backers a chance to be among the first in requesting any large statement
		// data.
		priority_peers.append(&mut peers_to_send);
	}
	peers_to_send = priority_peers;
	// We must not have duplicates:
	debug_assert!(
		peers_to_send.len() == peers_to_send.clone().into_iter().collect::<HashSet<_>>().len(),
		"We filter out duplicates above. qed.",
	);

	let (v1_peers_to_send, non_v1_peers_to_send) = peers_to_send
		.into_iter()
		.map(|peer_id| {
			let peer_data =
				peers.get_mut(&peer_id).expect("a subset is taken above, so it exists; qed");

			let new = peer_data.send(&relay_parent, &fingerprint);

			(peer_id, new, peer_data.protocol_version)
		})
		.partition::<Vec<_>, _>(|(_, _, version)| match version {
			ValidationVersion::V1 => true,
			ValidationVersion::V2 | ValidationVersion::V3 => false,
		}); // partition is handy here but not if we add more protocol versions

	let payload = v1_statement_message(relay_parent, stored.statement.clone(), metrics);

	// Send all these peers the initial statement.
	if !v1_peers_to_send.is_empty() {
		gum::trace!(
			target: LOG_TARGET,
			?v1_peers_to_send,
			?relay_parent,
			statement = ?stored.statement,
			"Sending statement to v1 peers",
		);
		ctx.send_message(NetworkBridgeTxMessage::SendValidationMessage(
			v1_peers_to_send.iter().map(|(p, _, _)| *p).collect(),
			compatible_v1_message(ValidationVersion::V1, payload.clone()).into(),
		))
		.await;
	}

	let peers_to_send: Vec<(PeerId, ProtocolVersion)> = non_v1_peers_to_send
		.iter()
		.map(|(p, _, version)| (*p, (*version).into()))
		.collect();

	let peer_needs_dependent_statement = v1_peers_to_send
		.into_iter()
		.chain(non_v1_peers_to_send)
		.filter_map(|(peer, needs_dependent, _)| if needs_dependent { Some(peer) } else { None })
		.collect();

	let v2_peers_to_send = filter_by_peer_version(&peers_to_send, ValidationVersion::V2.into());
	let v3_to_send = filter_by_peer_version(&peers_to_send, ValidationVersion::V3.into());

	if !v2_peers_to_send.is_empty() {
		gum::trace!(
			target: LOG_TARGET,
			?v2_peers_to_send,
			?relay_parent,
			statement = ?stored.statement,
			"Sending statement to v2 peers",
		);
		ctx.send_message(NetworkBridgeTxMessage::SendValidationMessage(
			v2_peers_to_send,
			compatible_v1_message(ValidationVersion::V2, payload.clone()).into(),
		))
		.await;
	}

	if !v3_to_send.is_empty() {
		gum::trace!(
			target: LOG_TARGET,
			?v3_to_send,
			?relay_parent,
			statement = ?stored.statement,
			"Sending statement to v3 peers",
		);
		ctx.send_message(NetworkBridgeTxMessage::SendValidationMessage(
			v3_to_send,
			compatible_v1_message(ValidationVersion::V3, payload.clone()).into(),
		))
		.await;
	}

	peer_needs_dependent_statement
}

/// Send all statements about a given candidate hash to a peer.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn send_statements_about<Context>(
	peer: PeerId,
	peer_data: &mut PeerData,
	ctx: &mut Context,
	relay_parent: Hash,
	candidate_hash: CandidateHash,
	active_head: &ActiveHeadData,
	metrics: &Metrics,
) {
	for statement in active_head.statements_about(candidate_hash) {
		let fingerprint = statement.fingerprint();
		if !peer_data.can_send(&relay_parent, &fingerprint) {
			continue
		}
		peer_data.send(&relay_parent, &fingerprint);
		let payload = v1_statement_message(relay_parent, statement.statement.clone(), metrics);

		gum::trace!(
			target: LOG_TARGET,
			?peer,
			?relay_parent,
			?candidate_hash,
			statement = ?statement.statement,
			"Sending statement",
		);
		ctx.send_message(NetworkBridgeTxMessage::SendValidationMessage(
			vec![peer],
			compatible_v1_message(peer_data.protocol_version, payload).into(),
		))
		.await;

		metrics.on_statement_distributed();
	}
}

/// Send all statements at a given relay-parent to a peer.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn send_statements<Context>(
	peer: PeerId,
	peer_data: &mut PeerData,
	ctx: &mut Context,
	relay_parent: Hash,
	active_head: &ActiveHeadData,
	metrics: &Metrics,
) {
	for statement in active_head.statements() {
		let fingerprint = statement.fingerprint();
		if !peer_data.can_send(&relay_parent, &fingerprint) {
			continue
		}
		peer_data.send(&relay_parent, &fingerprint);
		let payload = v1_statement_message(relay_parent, statement.statement.clone(), metrics);

		gum::trace!(
			target: LOG_TARGET,
			?peer,
			?relay_parent,
			statement = ?statement.statement,
			"Sending statement"
		);
		ctx.send_message(NetworkBridgeTxMessage::SendValidationMessage(
			vec![peer],
			compatible_v1_message(peer_data.protocol_version, payload).into(),
		))
		.await;

		metrics.on_statement_distributed();
	}
}

/// Modify the reputation of a peer based on its behavior.
async fn modify_reputation(
	reputation: &mut ReputationAggregator,
	sender: &mut impl overseer::StatementDistributionSenderTrait,
	peer: PeerId,
	rep: Rep,
) {
	reputation.modify(sender, peer, rep).await;
}

/// If message contains a statement, then retrieve it, otherwise fork task to fetch it.
///
/// This function will also return `None` if the message did not pass some basic checks, in that
/// case no statement will be requested, on the flipside you get `ActiveHeadData` in addition to
/// your statement.
///
/// If the message was large, but the result has been fetched already that one is returned.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn retrieve_statement_from_message<'a, Context>(
	peer: PeerId,
	peer_version: ValidationVersion,
	message: protocol_v1::StatementDistributionMessage,
	active_head: &'a mut ActiveHeadData,
	ctx: &mut Context,
	req_sender: &mpsc::Sender<RequesterMessage>,
	metrics: &Metrics,
) -> Option<UncheckedSignedFullStatement> {
	let fingerprint = message.get_fingerprint();
	let candidate_hash = *fingerprint.0.candidate_hash();

	// Immediately return any Seconded statement:
	let message = if let protocol_v1::StatementDistributionMessage::Statement(h, s) = message {
		if let Statement::Seconded(_) = s.unchecked_payload() {
			return Some(s)
		}
		protocol_v1::StatementDistributionMessage::Statement(h, s)
	} else {
		message
	};

	match active_head.waiting_large_statements.entry(candidate_hash) {
		Entry::Occupied(mut occupied) => {
			match occupied.get_mut() {
				LargeStatementStatus::Fetching(info) => {
					let is_large_statement = message.is_large_statement();

					let is_new_peer = match info.available_peers.entry(peer) {
						IEntry::Occupied(mut occupied) => {
							occupied.get_mut().push(compatible_v1_message(peer_version, message));
							false
						},
						IEntry::Vacant(vacant) => {
							vacant.insert(vec![compatible_v1_message(peer_version, message)]);
							true
						},
					};

					if is_new_peer & is_large_statement {
						info.peers_to_try.push(peer);
						// Answer any pending request for more peers:
						if let Some(sender) = info.peer_sender.take() {
							let to_send = std::mem::take(&mut info.peers_to_try);
							if let Err(peers) = sender.send(to_send) {
								// Requester no longer interested for now, might want them
								// later:
								info.peers_to_try = peers;
							}
						}
					}
				},
				LargeStatementStatus::FetchedOrShared(committed) => {
					match message {
						protocol_v1::StatementDistributionMessage::Statement(_, s) => {
							// We can now immediately return any statements (should only be
							// `Statement::Valid` ones, but we don't care at this point.)
							return Some(s)
						},
						protocol_v1::StatementDistributionMessage::LargeStatement(metadata) =>
							return Some(UncheckedSignedFullStatement::new(
								Statement::Seconded(committed.clone()),
								metadata.signed_by,
								metadata.signature.clone(),
							)),
					}
				},
			}
		},
		Entry::Vacant(vacant) => {
			match message {
				protocol_v1::StatementDistributionMessage::LargeStatement(metadata) => {
					if let Some(new_status) = launch_request(
						metadata,
						peer,
						peer_version,
						req_sender.clone(),
						ctx,
						metrics,
					)
					.await
					{
						vacant.insert(new_status);
					}
				},
				protocol_v1::StatementDistributionMessage::Statement(_, s) => {
					// No fetch in progress, safe to return any statement immediately (we don't
					// bother about normal network jitter which might cause `Valid` statements to
					// arrive early for now.).
					return Some(s)
				},
			}
		},
	}
	None
}

/// Launch request for a large statement and get tracking status.
///
/// Returns `None` if spawning task failed.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn launch_request<Context>(
	meta: StatementMetadata,
	peer: PeerId,
	peer_version: ValidationVersion,
	req_sender: mpsc::Sender<RequesterMessage>,
	ctx: &mut Context,
	metrics: &Metrics,
) -> Option<LargeStatementStatus> {
	let (task, handle) =
		fetch(meta.relay_parent, meta.candidate_hash, vec![peer], req_sender, metrics.clone())
			.remote_handle();

	let result = ctx.spawn("large-statement-fetcher", task.boxed());
	if let Err(err) = result {
		gum::error!(target: LOG_TARGET, ?err, "Spawning task failed.");
		return None
	}
	let available_peers = {
		let mut m = IndexMap::new();
		m.insert(
			peer,
			vec![compatible_v1_message(
				peer_version,
				protocol_v1::StatementDistributionMessage::LargeStatement(meta),
			)],
		);
		m
	};
	Some(LargeStatementStatus::Fetching(FetchingInfo {
		available_peers,
		peers_to_try: Vec::new(),
		peer_sender: None,
		fetching_task: handle,
	}))
}

/// Handle incoming message and circulate it to peers, if we did not know it already.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn handle_incoming_message_and_circulate<'a, Context, R>(
	peer: PeerId,
	topology_storage: &SessionBoundGridTopologyStorage,
	peers: &mut HashMap<PeerId, PeerData>,
	active_heads: &'a mut HashMap<Hash, ActiveHeadData>,
	recent_outdated_heads: &RecentOutdatedHeads,
	ctx: &mut Context,
	message: net_protocol::StatementDistributionMessage,
	req_sender: &mpsc::Sender<RequesterMessage>,
	metrics: &Metrics,
	runtime: &mut RuntimeInfo,
	rng: &mut R,
	reputation: &mut ReputationAggregator,
) where
	R: rand::Rng,
{
	let handled_incoming = match peers.get_mut(&peer) {
		Some(data) =>
			handle_incoming_message(
				peer,
				data,
				active_heads,
				recent_outdated_heads,
				ctx,
				message,
				req_sender,
				metrics,
				reputation,
			)
			.await,
		None => None,
	};

	// if we got a fresh message, we need to circulate it to all peers.
	if let Some((relay_parent, statement)) = handled_incoming {
		// we can ignore the set of peers who this function returns as now expecting
		// dependent statements.
		//
		// we have the invariant in this subsystem that we never store a `Valid` or `Invalid`
		// statement before a `Seconded` statement. `Seconded` statements are the only ones
		// that require dependents. Thus, if this is a `Seconded` statement for a candidate we
		// were not aware of before, we cannot have any dependent statements from the candidate.
		let _ = metrics.time_network_bridge_update("circulate_statement");

		let session_index = runtime.get_session_index_for_child(ctx.sender(), relay_parent).await;
		let topology = match session_index {
			Ok(session_index) =>
				topology_storage.get_topology_or_fallback(session_index).local_grid_neighbors(),
			Err(e) => {
				gum::debug!(
					target: LOG_TARGET,
					%relay_parent,
					"cannot get session index for the specific relay parent: {:?}",
					e
				);

				topology_storage.get_current_topology().local_grid_neighbors()
			},
		};
		let required_routing =
			topology.required_routing_by_index(statement.statement.validator_index(), false);

		let _ = circulate_statement(
			required_routing,
			topology,
			peers,
			ctx,
			relay_parent,
			statement,
			Vec::new(),
			metrics,
			rng,
		)
		.await;
	}
}

// Handle a statement. Returns a reference to a newly-stored statement
// if we were not already aware of it, along with the corresponding relay-parent.
//
// This function checks the signature and ensures the statement is compatible with our
// view. It also notifies candidate backing if the statement was previously unknown.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn handle_incoming_message<'a, Context>(
	peer: PeerId,
	peer_data: &mut PeerData,
	active_heads: &'a mut HashMap<Hash, ActiveHeadData>,
	recent_outdated_heads: &RecentOutdatedHeads,
	ctx: &mut Context,
	message: net_protocol::StatementDistributionMessage,
	req_sender: &mpsc::Sender<RequesterMessage>,
	metrics: &Metrics,
	reputation: &mut ReputationAggregator,
) -> Option<(Hash, StoredStatement<'a>)> {
	let _ = metrics.time_network_bridge_update("handle_incoming_message");

	let message = match message {
		Versioned::V1(m) => m,
		Versioned::V2(protocol_v2::StatementDistributionMessage::V1Compatibility(m)) |
		Versioned::V3(protocol_v3::StatementDistributionMessage::V1Compatibility(m)) => m,
		Versioned::V2(_) | Versioned::V3(_) => {
			// The higher-level subsystem code is supposed to filter out
			// all non v1 messages.
			gum::debug!(
				target: LOG_TARGET,
				"Legacy statement-distribution code received unintended v2 message"
			);

			return None
		},
	};

	let relay_parent = message.get_relay_parent();

	let active_head = match active_heads.get_mut(&relay_parent) {
		Some(h) => h,
		None => {
			gum::debug!(
				target: LOG_TARGET,
				%relay_parent,
				"our view out-of-sync with active heads; head not found",
			);

			if !recent_outdated_heads.is_recent_outdated(&relay_parent) {
				modify_reputation(reputation, ctx.sender(), peer, COST_UNEXPECTED_STATEMENT).await;
			}

			return None
		},
	};

	if let protocol_v1::StatementDistributionMessage::LargeStatement(_) = message {
		if let Err(rep) = peer_data.receive_large_statement(&relay_parent) {
			gum::debug!(target: LOG_TARGET, ?peer, ?message, ?rep, "Unexpected large statement.",);
			modify_reputation(reputation, ctx.sender(), peer, rep).await;
			return None
		}
	}

	let fingerprint = message.get_fingerprint();
	let candidate_hash = *fingerprint.0.candidate_hash();

	let max_message_count = active_head.validators.len() * 2;

	// perform only basic checks before verifying the signature
	// as it's more computationally heavy
	if let Err(rep) = peer_data.check_can_receive(&relay_parent, &fingerprint, max_message_count) {
		// This situation can happen when a peer's Seconded message was lost
		// but we have received the Valid statement.
		// So we check it once and then ignore repeated violation to avoid
		// reputation change flood.
		let unexpected_count = peer_data.receive_unexpected(&relay_parent);

		gum::debug!(
			target: LOG_TARGET,
			?relay_parent,
			?peer,
			?message,
			?rep,
			?unexpected_count,
			"Error inserting received statement"
		);

		match rep {
			// This happens when a Valid statement has been received but there is no corresponding
			// Seconded
			COST_UNEXPECTED_STATEMENT_UNKNOWN_CANDIDATE => {
				metrics.on_unexpected_statement_valid();
				// Report peer merely if this is not a duplicate out-of-view statement that
				// was caused by a missing Seconded statement from this peer
				if unexpected_count == 0_usize {
					modify_reputation(reputation, ctx.sender(), peer, rep).await;
				}
			},
			// This happens when we have an unexpected remote peer that announced Seconded
			COST_UNEXPECTED_STATEMENT_REMOTE => {
				metrics.on_unexpected_statement_seconded();
				modify_reputation(reputation, ctx.sender(), peer, rep).await;
			},
			_ => {
				modify_reputation(reputation, ctx.sender(), peer, rep).await;
			},
		}

		return None
	}

	let checked_compact = {
		let (compact, validator_index) = message.get_fingerprint();
		let signature = message.get_signature();

		let unchecked_compact = UncheckedSignedStatement::new(compact, validator_index, signature);

		match active_head.check_useful_or_unknown(&unchecked_compact) {
			Ok(()) => {},
			Err(DeniedStatement::NotUseful) => return None,
			Err(DeniedStatement::UsefulButKnown) => {
				// Note a received statement in the peer data
				peer_data
					.receive(&relay_parent, &fingerprint, max_message_count)
					.expect("checked in `check_can_receive` above; qed");
				modify_reputation(reputation, ctx.sender(), peer, BENEFIT_VALID_STATEMENT).await;

				return None
			},
		}

		// check the signature on the statement.
		match check_statement_signature(&active_head, relay_parent, unchecked_compact) {
			Err(statement) => {
				gum::debug!(target: LOG_TARGET, ?peer, ?statement, "Invalid statement signature");
				modify_reputation(reputation, ctx.sender(), peer, COST_INVALID_SIGNATURE).await;
				return None
			},
			Ok(statement) => statement,
		}
	};

	// Fetch from the network only after signature and usefulness checks are completed.
	let is_large_statement = message.is_large_statement();
	let statement = retrieve_statement_from_message(
		peer,
		peer_data.protocol_version,
		message,
		active_head,
		ctx,
		req_sender,
		metrics,
	)
	.await?;

	let payload = statement.unchecked_into_payload();

	// Upgrade the `Signed` wrapper from the compact payload to the full payload.
	// This fails if the payload doesn't encode correctly.
	let statement: SignedFullStatement = match checked_compact.convert_to_superpayload(payload) {
		Err((compact, _)) => {
			gum::debug!(
				target: LOG_TARGET,
				?peer,
				?compact,
				is_large_statement,
				"Full statement had bad payload."
			);
			modify_reputation(reputation, ctx.sender(), peer, COST_WRONG_HASH).await;
			return None
		},
		Ok(statement) => statement,
	};

	// Ensure the statement is stored in the peer data.
	//
	// Note that if the peer is sending us something that is not within their view,
	// it will not be kept within their log.
	match peer_data.receive(&relay_parent, &fingerprint, max_message_count) {
		Err(_) => {
			unreachable!("checked in `check_can_receive` above; qed");
		},
		Ok(true) => {
			gum::trace!(target: LOG_TARGET, ?peer, ?statement, "Statement accepted");
			// Send the peer all statements concerning the candidate that we have,
			// since it appears to have just learned about the candidate.
			send_statements_about(
				peer,
				peer_data,
				ctx,
				relay_parent,
				candidate_hash,
				&*active_head,
				metrics,
			)
			.await;
		},
		Ok(false) => {},
	}

	// For `Seconded` statements `None` or `Err` means we couldn't fetch the PVD, which
	// means the statement shouldn't be accepted.
	//
	// In case of `Valid` we should have it cached prior, therefore this performs
	// no Runtime API calls and always returns `Ok(Some(_))`.
	let pvd = if let Statement::Seconded(receipt) = statement.payload() {
		let para_id = receipt.descriptor.para_id();
		// Either call the Runtime API or check that validation data is cached.
		let result = active_head
			.fetch_persisted_validation_data(ctx.sender(), relay_parent, para_id)
			.await;

		match result {
			Ok(Some(pvd)) => Some(pvd.clone()),
			Ok(None) | Err(_) => return None,
		}
	} else {
		None
	};

	// Extend the payload with persisted validation data required by the backing
	// subsystem.
	//
	// Do it in advance before noting the statement because we don't want to borrow active
	// head mutable and use the cache.
	let statement_with_pvd = statement
		.clone()
		.convert_to_superpayload_with(move |statement| match statement {
			Statement::Seconded(receipt) => {
				let persisted_validation_data = pvd
					.expect("PVD is ensured to be `Some` for all `Seconded` messages above; qed");
				StatementWithPVD::Seconded(receipt, persisted_validation_data)
			},
			Statement::Valid(candidate_hash) => StatementWithPVD::Valid(candidate_hash),
		})
		.expect("payload was checked with conversion from compact; qed");

	// Note: `peer_data.receive` already ensures that the statement is not an unbounded equivocation
	// or unpinned to a seconded candidate. So it is safe to place it into the storage.
	match active_head.note_statement(statement) {
		NotedStatement::NotUseful | NotedStatement::UsefulButKnown => {
			unreachable!("checked in `is_useful_or_unknown` above; qed");
		},
		NotedStatement::Fresh(statement) => {
			modify_reputation(reputation, ctx.sender(), peer, BENEFIT_VALID_STATEMENT_FIRST).await;

			// When we receive a new message from a peer, we forward it to the
			// candidate backing subsystem.
			ctx.send_message(CandidateBackingMessage::Statement(relay_parent, statement_with_pvd))
				.await;

			Some((relay_parent, statement))
		},
	}
}

/// Update a peer's view. Sends all newly unlocked statements based on the previous
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
async fn update_peer_view_and_maybe_send_unlocked<Context, R>(
	peer: PeerId,
	topology: &GridNeighbors,
	peer_data: &mut PeerData,
	ctx: &mut Context,
	active_heads: &HashMap<Hash, ActiveHeadData>,
	new_view: View,
	metrics: &Metrics,
	rng: &mut R,
) where
	R: rand::Rng,
{
	let old_view = std::mem::replace(&mut peer_data.view, new_view);

	// Remove entries for all relay-parents in the old view but not the new.
	for removed in old_view.difference(&peer_data.view) {
		let _ = peer_data.view_knowledge.remove(removed);
	}

	// Use both grid directions
	let is_gossip_peer = topology.route_to_peer(RequiredRouting::GridXY, &peer);
	let lucky = is_gossip_peer ||
		util::gen_ratio_rng(
			util::MIN_GOSSIP_PEERS.saturating_sub(topology.len()),
			util::MIN_GOSSIP_PEERS,
			rng,
		);

	// Add entries for all relay-parents in the new view but not the old.
	// Furthermore, send all statements we have for those relay parents.
	let new_view = peer_data.view.difference(&old_view).copied().collect::<Vec<_>>();
	for new in new_view.iter().copied() {
		peer_data.view_knowledge.insert(new, Default::default());
		if !lucky {
			continue
		}
		if let Some(active_head) = active_heads.get(&new) {
			send_statements(peer, peer_data, ctx, new, active_head, metrics).await;
		}
	}
}

/// Handle a local network update.
#[overseer::contextbounds(StatementDistribution, prefix=self::overseer)]
pub(crate) async fn handle_network_update<Context, R>(
	ctx: &mut Context,
	state: &mut State,
	req_sender: &mpsc::Sender<RequesterMessage>,
	update: NetworkBridgeEvent<net_protocol::StatementDistributionMessage>,
	rng: &mut R,
	metrics: &Metrics,
	reputation: &mut ReputationAggregator,
) where
	R: rand::Rng,
{
	let peers = &mut state.peers;
	let topology_storage = &mut state.topology_storage;
	let authorities = &mut state.authorities;
	let active_heads = &mut state.active_heads;
	let recent_outdated_heads = &state.recent_outdated_heads;
	let runtime = &mut state.runtime;

	match update {
		NetworkBridgeEvent::PeerConnected(peer, role, protocol_version, maybe_authority) => {
			gum::trace!(target: LOG_TARGET, ?peer, ?role, ?protocol_version, "Peer connected");

			let protocol_version = match ValidationVersion::try_from(protocol_version).ok() {
				Some(v) => v,
				None => {
					gum::trace!(
						target: LOG_TARGET,
						?peer,
						?protocol_version,
						"unknown protocol version, ignoring"
					);
					return
				},
			};

			peers.insert(
				peer,
				PeerData {
					view: Default::default(),
					protocol_version,
					view_knowledge: Default::default(),
					maybe_authority: maybe_authority.clone(),
				},
			);
			if let Some(authority_ids) = maybe_authority {
				authority_ids.into_iter().for_each(|a| {
					authorities.insert(a, peer);
				});
			}
		},
		NetworkBridgeEvent::PeerDisconnected(peer) => {
			gum::trace!(target: LOG_TARGET, ?peer, "Peer disconnected");
			if let Some(auth_ids) = peers.remove(&peer).and_then(|p| p.maybe_authority) {
				auth_ids.into_iter().for_each(|a| {
					authorities.remove(&a);
				});
			}
		},
		NetworkBridgeEvent::NewGossipTopology(topology) => {
			let _ = metrics.time_network_bridge_update("new_gossip_topology");

			let new_session_index = topology.session;
			let new_topology = topology.topology;
			let old_topology =
				topology_storage.get_current_topology().local_grid_neighbors().clone();
			topology_storage.update_topology(new_session_index, new_topology, topology.local_index);

			let newly_added = topology_storage
				.get_current_topology()
				.local_grid_neighbors()
				.peers_diff(&old_topology);

			for peer in newly_added {
				if let Some(data) = peers.get_mut(&peer) {
					let view = std::mem::take(&mut data.view);
					update_peer_view_and_maybe_send_unlocked(
						peer,
						topology_storage.get_current_topology().local_grid_neighbors(),
						data,
						ctx,
						&*active_heads,
						view,
						metrics,
						rng,
					)
					.await
				}
			}
		},
		NetworkBridgeEvent::PeerMessage(peer, message) => {
			handle_incoming_message_and_circulate(
				peer,
				topology_storage,
				peers,
				active_heads,
				recent_outdated_heads,
				ctx,
				message,
				req_sender,
				metrics,
				runtime,
				rng,
				reputation,
			)
			.await;
		},
		NetworkBridgeEvent::PeerViewChange(peer, view) => {
			let _ = metrics.time_network_bridge_update("peer_view_change");
			gum::trace!(target: LOG_TARGET, ?peer, ?view, "Peer view change");
			match peers.get_mut(&peer) {
				Some(data) =>
					update_peer_view_and_maybe_send_unlocked(
						peer,
						topology_storage.get_current_topology().local_grid_neighbors(),
						data,
						ctx,
						&*active_heads,
						view,
						metrics,
						rng,
					)
					.await,
				None => (),
			}
		},
		NetworkBridgeEvent::OurViewChange(_view) => {
			// handled by `ActiveLeavesUpdate`
		},
		NetworkBridgeEvent::UpdatedAuthorityIds(peer, authority_ids) => {
			gum::trace!(
				target: LOG_TARGET,
				?peer,
				?authority_ids,
				"Updated `AuthorityDiscoveryId`s"
			);
			topology_storage
				.get_current_topology_mut()
				.update_authority_ids(peer, &authority_ids);
			// Remove the authority IDs which were previously mapped to the peer
			// but aren't part of the new set.
			authorities.retain(|a, p| p != &peer || authority_ids.contains(a));

			// Map the new authority IDs to the peer.
			for a in authority_ids.iter().cloned() {
				authorities.insert(a, peer);
			}

			if let Some(data) = peers.get_mut(&peer) {
				data.maybe_authority = Some(authority_ids);
			}
		},
	}
}

/// Handle messages from responder background task.
pub(crate) async fn handle_responder_message(
	state: &mut State,
	message: ResponderMessage,
) -> JfyiErrorResult<()> {
	let peers = &state.peers;
	let active_heads = &mut state.active_heads;

	match message {
		ResponderMessage::GetData { requesting_peer, relay_parent, candidate_hash, tx } => {
			if !requesting_peer_knows_about_candidate(
				peers,
				&requesting_peer,
				&relay_parent,
				&candidate_hash,
			)? {
				return Err(JfyiError::RequestedUnannouncedCandidate(
					requesting_peer,
					candidate_hash,
				))
			}

			let active_head =
				active_heads.get(&relay_parent).ok_or(JfyiError::NoSuchHead(relay_parent))?;

			let committed = match active_head.waiting_large_statements.get(&candidate_hash) {
				Some(LargeStatementStatus::FetchedOrShared(committed)) => committed.clone(),
				_ =>
					return Err(JfyiError::NoSuchFetchedLargeStatement(relay_parent, candidate_hash)),
			};

			tx.send(committed).map_err(|_| JfyiError::ResponderGetDataCanceled)?;
		},
	}
	Ok(())
}

#[overseer::contextbounds(StatementDistribution, prefix = self::overseer)]
pub(crate) async fn handle_requester_message<Context, R: rand::Rng>(
	ctx: &mut Context,
	state: &mut State,
	req_sender: &mpsc::Sender<RequesterMessage>,
	rng: &mut R,
	message: RequesterMessage,
	metrics: &Metrics,
	reputation: &mut ReputationAggregator,
) -> JfyiErrorResult<()> {
	let topology_storage = &state.topology_storage;
	let peers = &mut state.peers;
	let active_heads = &mut state.active_heads;
	let recent_outdated_heads = &state.recent_outdated_heads;
	let runtime = &mut state.runtime;

	match message {
		RequesterMessage::Finished {
			relay_parent,
			candidate_hash,
			from_peer,
			response,
			bad_peers,
		} => {
			for bad in bad_peers {
				modify_reputation(reputation, ctx.sender(), bad, COST_FETCH_FAIL).await;
			}
			modify_reputation(reputation, ctx.sender(), from_peer, BENEFIT_VALID_RESPONSE).await;

			let active_head =
				active_heads.get_mut(&relay_parent).ok_or(JfyiError::NoSuchHead(relay_parent))?;

			let status = active_head.waiting_large_statements.remove(&candidate_hash);

			let info = match status {
				Some(LargeStatementStatus::Fetching(info)) => info,
				Some(LargeStatementStatus::FetchedOrShared(_)) => {
					// We are no longer interested in the data.
					return Ok(())
				},
				None =>
					return Err(JfyiError::NoSuchLargeStatementStatus(relay_parent, candidate_hash)),
			};

			active_head
				.waiting_large_statements
				.insert(candidate_hash, LargeStatementStatus::FetchedOrShared(response));

			// Cache is now populated, send all messages:
			for (peer, messages) in info.available_peers {
				for message in messages {
					handle_incoming_message_and_circulate(
						peer,
						topology_storage,
						peers,
						active_heads,
						recent_outdated_heads,
						ctx,
						message,
						req_sender,
						&metrics,
						runtime,
						rng,
						reputation,
					)
					.await;
				}
			}
		},
		RequesterMessage::SendRequest(req) => {
			ctx.send_message(NetworkBridgeTxMessage::SendRequests(
				vec![req],
				IfDisconnected::ImmediateError,
			))
			.await;
		},
		RequesterMessage::GetMorePeers { relay_parent, candidate_hash, tx } => {
			let active_head =
				active_heads.get_mut(&relay_parent).ok_or(JfyiError::NoSuchHead(relay_parent))?;

			let status = active_head.waiting_large_statements.get_mut(&candidate_hash);

			let info = match status {
				Some(LargeStatementStatus::Fetching(info)) => info,
				Some(LargeStatementStatus::FetchedOrShared(_)) => {
					// This task is going to die soon - no need to send it anything.
					gum::debug!(target: LOG_TARGET, "Zombie task wanted more peers.");
					return Ok(())
				},
				None =>
					return Err(JfyiError::NoSuchLargeStatementStatus(relay_parent, candidate_hash)),
			};

			if info.peers_to_try.is_empty() {
				info.peer_sender = Some(tx);
			} else {
				let peers_to_try = std::mem::take(&mut info.peers_to_try);
				if let Err(peers) = tx.send(peers_to_try) {
					// No longer interested for now - might want them later:
					info.peers_to_try = peers;
				}
			}
		},
		RequesterMessage::ReportPeer(peer, rep) =>
			modify_reputation(reputation, ctx.sender(), peer, rep).await,
	}
	Ok(())
}

/// Handle a deactivated leaf.
pub(crate) fn handle_deactivate_leaf(state: &mut State, deactivated: Hash) {
	if state.active_heads.remove(&deactivated).is_some() {
		gum::trace!(
			target: LOG_TARGET,
			hash = ?deactivated,
			"Deactivating leaf",
		);

		state.recent_outdated_heads.note_outdated(deactivated);
	}
}

/// Handle a new activated leaf. This assumes that the leaf does not
/// support prospective parachains.
#[overseer::contextbounds(StatementDistribution, prefix = self::overseer)]
pub(crate) async fn handle_activated_leaf<Context>(
	ctx: &mut Context,
	state: &mut State,
	activated: ActivatedLeaf,
) -> Result<()> {
	let relay_parent = activated.hash;
	gum::trace!(
		target: LOG_TARGET,
		hash = ?relay_parent,
		"New active leaf",
	);

	// Retrieve the parachain validators at the child of the head we track.
	let session_index =
		state.runtime.get_session_index_for_child(ctx.sender(), relay_parent).await?;
	let info = state
		.runtime
		.get_session_info_by_index(ctx.sender(), relay_parent, session_index)
		.await?;
	let session_info = &info.session_info;

	state
		.active_heads
		.entry(relay_parent)
		.or_insert(ActiveHeadData::new(session_info.validators.clone(), session_index));

	Ok(())
}

/// Share a local statement with the rest of the network.
#[overseer::contextbounds(StatementDistribution, prefix = self::overseer)]
pub(crate) async fn share_local_statement<Context, R: Rng>(
	ctx: &mut Context,
	state: &mut State,
	relay_parent: Hash,
	statement: SignedFullStatement,
	rng: &mut R,
	metrics: &Metrics,
) -> Result<()> {
	// Make sure we have data in cache:
	if is_statement_large(&statement).0 {
		if let Statement::Seconded(committed) = &statement.payload() {
			let active_head = state
				.active_heads
				.get_mut(&relay_parent)
				// This should never be out-of-sync with our view if the view
				// updates correspond to actual `StartWork` messages.
				.ok_or(JfyiError::NoSuchHead(relay_parent))?;
			active_head.waiting_large_statements.insert(
				statement.payload().candidate_hash(),
				LargeStatementStatus::FetchedOrShared(committed.clone()),
			);
		}
	}

	let info = state.runtime.get_session_info(ctx.sender(), relay_parent).await?;
	let session_info = &info.session_info;
	let validator_info = &info.validator_info;

	// Get peers in our group, so we can make sure they get our statement
	// directly:
	let group_peers = {
		if let Some(our_group) = validator_info.our_group {
			let our_group = &session_info
				.validator_groups
				.get(our_group)
				.expect("`our_group` is derived from `validator_groups`; qed");

			our_group
				.into_iter()
				.filter_map(|i| {
					if Some(*i) == validator_info.our_index {
						return None
					}
					let authority_id = &session_info.discovery_keys[i.0 as usize];
					state.authorities.get(authority_id).map(|p| *p)
				})
				.collect()
		} else {
			Vec::new()
		}
	};
	circulate_statement_and_dependents(
		&mut state.topology_storage,
		&mut state.peers,
		&mut state.active_heads,
		ctx,
		relay_parent,
		statement,
		group_peers,
		metrics,
		rng,
	)
	.await;

	Ok(())
}

/// Check whether a peer knows about a candidate from us.
///
/// If not, it is deemed illegal for it to request corresponding data from us.
fn requesting_peer_knows_about_candidate(
	peers: &HashMap<PeerId, PeerData>,
	requesting_peer: &PeerId,
	relay_parent: &Hash,
	candidate_hash: &CandidateHash,
) -> JfyiErrorResult<bool> {
	let peer_data = peers
		.get(requesting_peer)
		.ok_or_else(|| JfyiError::NoSuchPeer(*requesting_peer))?;
	let knowledge = peer_data
		.view_knowledge
		.get(relay_parent)
		.ok_or_else(|| JfyiError::NoSuchHead(*relay_parent))?;
	Ok(knowledge.sent_candidates.get(&candidate_hash).is_some())
}

fn compatible_v1_message(
	version: ValidationVersion,
	message: protocol_v1::StatementDistributionMessage,
) -> net_protocol::StatementDistributionMessage {
	match version {
		ValidationVersion::V1 => Versioned::V1(message),
		ValidationVersion::V2 =>
			Versioned::V2(protocol_v2::StatementDistributionMessage::V1Compatibility(message)),
		ValidationVersion::V3 =>
			Versioned::V3(protocol_v3::StatementDistributionMessage::V1Compatibility(message)),
	}
}