1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! PVF artifacts (final compiled code blobs).
//!
//! # Lifecycle of an artifact
//!
//! 1. During node start-up, we prune all the cached artifacts, if any.
//!
//! 2. In order to be executed, a PVF should be prepared first. This means that artifacts should
//! have an [`ArtifactState::Prepared`] entry for that artifact in the table. If not, the
//! preparation process kicks in. The execution request is stashed until after the preparation is
//! done, and the artifact state in the host is set to [`ArtifactState::Preparing`]. Preparation
//! goes through the preparation queue and the pool.
//!
//! 1. If the artifact is already being processed, we add another execution request to the
//! existing preparation job, without starting a new one.
//!
//! 2. Note that if the state is [`ArtifactState::FailedToProcess`], we usually do not retry
//! preparation, though we may under certain conditions.
//!
//! 3. The pool gets an available worker and instructs it to work on the given PVF. The worker
//! starts compilation. When the worker finishes successfully, it writes the serialized artifact
//! into a temporary file and notifies the host that it's done. The host atomically moves
//! (renames) the temporary file to the destination filename of the artifact.
//!
//! 4. If the worker concluded successfully or returned an error, then the pool notifies the queue.
//! In both cases, the queue reports to the host that the result is ready.
//!
//! 5. The host will react by changing the artifact state to either [`ArtifactState::Prepared`] or
//! [`ArtifactState::FailedToProcess`] for the PVF in question. On success, the
//! `last_time_needed` will be set to the current time. It will also dispatch the pending
//! execution requests.
//!
//! 6. On success, the execution request will come through the execution queue and ultimately be
//! processed by an execution worker. When this worker receives the request, it will read the
//! requested artifact. If it doesn't exist it reports an internal error. A request for execution
//! will bump the `last_time_needed` to the current time.
//!
//! 7. There is a separate process for pruning the prepared artifacts whose `last_time_needed` is
//! older by a predefined parameter. This process is run very rarely (say, once a day). Once the
//! artifact is expired it is removed from disk eagerly atomically.
use crate::{host::PrecheckResultSender, worker_interface::WORKER_DIR_PREFIX};
use always_assert::always;
use polkadot_node_core_pvf_common::{error::PrepareError, pvf::PvfPrepData};
use polkadot_parachain_primitives::primitives::ValidationCodeHash;
use polkadot_primitives::ExecutorParamsPrepHash;
use std::{
collections::HashMap,
fs,
path::{Path, PathBuf},
time::{Duration, SystemTime},
};
/// The extension to use for cached artifacts.
const ARTIFACT_EXTENSION: &str = "pvf";
/// The prefix that artifacts used to start with under the old naming scheme.
const ARTIFACT_OLD_PREFIX: &str = "wasmtime_";
pub fn generate_artifact_path(cache_path: &Path) -> PathBuf {
let file_name = {
use array_bytes::Hex;
use rand::RngCore;
let mut bytes = [0u8; 64];
rand::thread_rng().fill_bytes(&mut bytes);
bytes.hex("0x")
};
let mut artifact_path = cache_path.join(file_name);
artifact_path.set_extension(ARTIFACT_EXTENSION);
artifact_path
}
/// Identifier of an artifact. Encodes a code hash of the PVF and a hash of preparation-related
/// executor parameter set.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ArtifactId {
pub(crate) code_hash: ValidationCodeHash,
pub(crate) executor_params_prep_hash: ExecutorParamsPrepHash,
}
impl ArtifactId {
/// Creates a new artifact ID with the given hash.
pub fn new(
code_hash: ValidationCodeHash,
executor_params_prep_hash: ExecutorParamsPrepHash,
) -> Self {
Self { code_hash, executor_params_prep_hash }
}
/// Returns an artifact ID that corresponds to the PVF with given preparation-related
/// executor parameters.
pub fn from_pvf_prep_data(pvf: &PvfPrepData) -> Self {
Self::new(pvf.code_hash(), pvf.executor_params().prep_hash())
}
}
/// A bundle of the artifact ID and the path.
///
/// Rationale for having this is two-fold:
///
/// - While we can derive the artifact path from the artifact id, it makes sense to carry it around
/// sometimes to avoid extra work.
/// - At the same time, carrying only path limiting the ability for logging.
#[derive(Debug, Clone)]
pub struct ArtifactPathId {
pub(crate) id: ArtifactId,
pub(crate) path: PathBuf,
}
impl ArtifactPathId {
pub(crate) fn new(artifact_id: ArtifactId, path: &Path) -> Self {
Self { id: artifact_id, path: path.to_owned() }
}
}
#[derive(Debug)]
pub enum ArtifactState {
/// The artifact is ready to be used by the executor.
///
/// That means that the artifact should be accessible through the path obtained by the artifact
/// id (unless, it was removed externally).
Prepared {
/// The path of the compiled artifact.
path: PathBuf,
/// The time when the artifact was last needed.
///
/// This is updated when we get the heads up for this artifact or when we just discover
/// this file.
last_time_needed: SystemTime,
/// Size in bytes
size: u64,
},
/// A task to prepare this artifact is scheduled.
Preparing {
/// List of result senders that are waiting for a response.
waiting_for_response: Vec<PrecheckResultSender>,
/// The number of times this artifact has failed to prepare.
num_failures: u32,
},
/// The code couldn't be compiled due to an error. Such artifacts
/// never reach the executor and stay in the host's memory.
FailedToProcess {
/// Keep track of the last time that processing this artifact failed.
last_time_failed: SystemTime,
/// The number of times this artifact has failed to prepare.
num_failures: u32,
/// The last error encountered for preparation.
error: PrepareError,
},
}
/// A container of all known artifact ids and their states.
pub struct Artifacts {
inner: HashMap<ArtifactId, ArtifactState>,
}
/// Parameters we use to cleanup artifacts
/// After we hit the cache limit we remove the least used artifacts
/// but only if they are stale more than minimum stale time
#[derive(Debug)]
pub struct ArtifactsCleanupConfig {
// Max size in bytes. Reaching it the least used artefacts are deleted
cache_limit: u64,
// Inactive time after which artefact is allowed to be deleted
min_stale_time: Duration,
}
impl Default for ArtifactsCleanupConfig {
fn default() -> Self {
Self {
cache_limit: 10 * 1024 * 1024 * 1024, // 10 GiB
min_stale_time: Duration::from_secs(24 * 60 * 60), // 24 hours
}
}
}
#[cfg(test)]
impl ArtifactsCleanupConfig {
pub fn new(cache_limit: u64, min_stale_time: Duration) -> Self {
Self { cache_limit, min_stale_time }
}
}
impl Artifacts {
#[cfg(test)]
pub(crate) fn empty() -> Self {
Self { inner: HashMap::new() }
}
#[cfg(test)]
fn len(&self) -> usize {
self.inner.len()
}
#[cfg(test)]
fn artifact_ids(&self) -> Vec<ArtifactId> {
self.inner.keys().cloned().collect()
}
/// Create an empty table and the cache directory on-disk if it doesn't exist.
pub async fn new(cache_path: &Path) -> Self {
// Make sure that the cache path directory and all its parents are created.
let _ = tokio::fs::create_dir_all(cache_path).await;
// Delete any leftover artifacts and worker dirs from previous runs. We don't delete the
// entire cache directory in case the user made a mistake and set it to e.g. their home
// directory. This is a best-effort to do clean-up, so ignore any errors.
for entry in fs::read_dir(cache_path).into_iter().flatten().flatten() {
let path = entry.path();
let Some(file_name) = path.file_name().and_then(|f| f.to_str()) else { continue };
if path.is_dir() && file_name.starts_with(WORKER_DIR_PREFIX) {
let _ = fs::remove_dir_all(path);
} else if path.extension().map_or(false, |ext| ext == ARTIFACT_EXTENSION) ||
file_name.starts_with(ARTIFACT_OLD_PREFIX)
{
let _ = fs::remove_file(path);
}
}
Self { inner: HashMap::new() }
}
/// Returns the state of the given artifact by its ID.
pub fn artifact_state_mut(&mut self, artifact_id: &ArtifactId) -> Option<&mut ArtifactState> {
self.inner.get_mut(artifact_id)
}
/// Inform the table about the artifact with the given ID. The state will be set to "preparing".
///
/// This function must be used only for brand-new artifacts and should never be used for
/// replacing existing ones.
pub fn insert_preparing(
&mut self,
artifact_id: ArtifactId,
waiting_for_response: Vec<PrecheckResultSender>,
) {
// See the precondition.
always!(self
.inner
.insert(artifact_id, ArtifactState::Preparing { waiting_for_response, num_failures: 0 })
.is_none());
}
/// Insert an artifact with the given ID as "prepared".
///
/// This function should only be used to build the artifact table at startup with valid
/// artifact caches.
#[cfg(test)]
pub(crate) fn insert_prepared(
&mut self,
artifact_id: ArtifactId,
path: PathBuf,
last_time_needed: SystemTime,
size: u64,
) {
// See the precondition.
always!(self
.inner
.insert(artifact_id, ArtifactState::Prepared { path, last_time_needed, size })
.is_none());
}
/// Remove artifact by its id.
pub fn remove(&mut self, artifact_id: ArtifactId) -> Option<(ArtifactId, PathBuf)> {
self.inner.remove(&artifact_id).and_then(|state| match state {
ArtifactState::Prepared { path, .. } => Some((artifact_id, path)),
_ => None,
})
}
/// Remove artifacts older than the given TTL when the total artifact size reaches the limit
/// and return id and path of the removed ones
pub fn prune(&mut self, cleanup_config: &ArtifactsCleanupConfig) -> Vec<(ArtifactId, PathBuf)> {
let mut to_remove = vec![];
let now = SystemTime::now();
let mut total_size = 0;
let mut artifact_sizes = vec![];
for (k, v) in self.inner.iter() {
if let ArtifactState::Prepared { ref path, last_time_needed, size, .. } = *v {
total_size += size;
artifact_sizes.push((k.clone(), path.clone(), size, last_time_needed));
}
}
artifact_sizes
.sort_by_key(|&(_, _, _, last_time_needed)| std::cmp::Reverse(last_time_needed));
while total_size > cleanup_config.cache_limit {
let Some((artifact_id, path, size, last_time_needed)) = artifact_sizes.pop() else {
break
};
let used_recently = now
.duration_since(last_time_needed)
.map(|stale_time| stale_time < cleanup_config.min_stale_time)
.unwrap_or(true);
if used_recently {
break;
}
self.inner.remove(&artifact_id);
to_remove.push((artifact_id, path));
total_size -= size;
}
to_remove
}
}
#[cfg(test)]
mod tests {
use crate::testing::artifact_id;
use super::*;
#[tokio::test]
async fn cache_cleared_on_startup() {
let tempdir = tempfile::tempdir().unwrap();
let cache_path = tempdir.path();
// These should be cleared.
fs::write(cache_path.join("abcd.pvf"), "test").unwrap();
fs::write(cache_path.join("wasmtime_..."), "test").unwrap();
fs::create_dir(cache_path.join("worker-dir-prepare-test")).unwrap();
// These should not be touched.
fs::write(cache_path.join("abcd.pvfartifact"), "test").unwrap();
fs::write(cache_path.join("polkadot_..."), "test").unwrap();
fs::create_dir(cache_path.join("worker-prepare-test")).unwrap();
let artifacts = Artifacts::new(cache_path).await;
let entries: Vec<String> = fs::read_dir(&cache_path)
.unwrap()
.map(|entry| entry.unwrap().file_name().into_string().unwrap())
.collect();
assert_eq!(entries.len(), 3);
assert!(entries.contains(&String::from("abcd.pvfartifact")));
assert!(entries.contains(&String::from("polkadot_...")));
assert!(entries.contains(&String::from("worker-prepare-test")));
assert_eq!(artifacts.len(), 0);
}
#[tokio::test]
async fn test_pruned_by_cache_size() {
let mock_now = SystemTime::now();
let tempdir = tempfile::tempdir().unwrap();
let cache_path = tempdir.path();
let path1 = generate_artifact_path(cache_path);
let path2 = generate_artifact_path(cache_path);
let path3 = generate_artifact_path(cache_path);
let artifact_id1 = artifact_id(1);
let artifact_id2 = artifact_id(2);
let artifact_id3 = artifact_id(3);
let mut artifacts = Artifacts::new(cache_path).await;
let cleanup_config = ArtifactsCleanupConfig::new(1500, Duration::from_secs(0));
artifacts.insert_prepared(
artifact_id1.clone(),
path1.clone(),
mock_now - Duration::from_secs(5),
1024,
);
artifacts.insert_prepared(
artifact_id2.clone(),
path2.clone(),
mock_now - Duration::from_secs(10),
1024,
);
artifacts.insert_prepared(
artifact_id3.clone(),
path3.clone(),
mock_now - Duration::from_secs(15),
1024,
);
let pruned = artifacts.prune(&cleanup_config);
assert!(artifacts.artifact_ids().contains(&artifact_id1));
assert!(!pruned.contains(&(artifact_id1, path1)));
assert!(!artifacts.artifact_ids().contains(&artifact_id2));
assert!(pruned.contains(&(artifact_id2, path2)));
assert!(!artifacts.artifact_ids().contains(&artifact_id3));
assert!(pruned.contains(&(artifact_id3, path3)));
}
#[tokio::test]
async fn test_did_not_prune_by_cache_size_because_of_stale_time() {
let mock_now = SystemTime::now();
let tempdir = tempfile::tempdir().unwrap();
let cache_path = tempdir.path();
let path1 = generate_artifact_path(cache_path);
let path2 = generate_artifact_path(cache_path);
let path3 = generate_artifact_path(cache_path);
let artifact_id1 = artifact_id(1);
let artifact_id2 = artifact_id(2);
let artifact_id3 = artifact_id(3);
let mut artifacts = Artifacts::new(cache_path).await;
let cleanup_config = ArtifactsCleanupConfig::new(1500, Duration::from_secs(12));
artifacts.insert_prepared(
artifact_id1.clone(),
path1.clone(),
mock_now - Duration::from_secs(5),
1024,
);
artifacts.insert_prepared(
artifact_id2.clone(),
path2.clone(),
mock_now - Duration::from_secs(10),
1024,
);
artifacts.insert_prepared(
artifact_id3.clone(),
path3.clone(),
mock_now - Duration::from_secs(15),
1024,
);
let pruned = artifacts.prune(&cleanup_config);
assert!(artifacts.artifact_ids().contains(&artifact_id1));
assert!(!pruned.contains(&(artifact_id1, path1)));
assert!(artifacts.artifact_ids().contains(&artifact_id2));
assert!(!pruned.contains(&(artifact_id2, path2)));
assert!(!artifacts.artifact_ids().contains(&artifact_id3));
assert!(pruned.contains(&(artifact_id3, path3)));
}
}