1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module contains routines for accessing and altering a contract related state.
pub mod meter;
use crate::{
exec::{AccountIdOf, Key},
weights::WeightInfo,
BalanceOf, CodeHash, CodeInfo, Config, ContractInfoOf, DeletionQueue, DeletionQueueCounter,
Error, TrieId, SENTINEL,
};
use alloc::vec::Vec;
use codec::{Decode, Encode, MaxEncodedLen};
use core::marker::PhantomData;
use frame_support::{
storage::child::{self, ChildInfo},
weights::{Weight, WeightMeter},
CloneNoBound, DefaultNoBound,
};
use scale_info::TypeInfo;
use sp_core::Get;
use sp_io::KillStorageResult;
use sp_runtime::{
traits::{Hash, Saturating, Zero},
BoundedBTreeMap, DispatchError, DispatchResult, RuntimeDebug,
};
use self::meter::Diff;
/// Information for managing an account and its sub trie abstraction.
/// This is the required info to cache for an account.
#[derive(Encode, Decode, CloneNoBound, PartialEq, Eq, RuntimeDebug, TypeInfo, MaxEncodedLen)]
#[scale_info(skip_type_params(T))]
pub struct ContractInfo<T: Config> {
/// Unique ID for the subtree encoded as a bytes vector.
pub trie_id: TrieId,
/// The code associated with a given account.
pub code_hash: CodeHash<T>,
/// How many bytes of storage are accumulated in this contract's child trie.
storage_bytes: u32,
/// How many items of storage are accumulated in this contract's child trie.
storage_items: u32,
/// This records to how much deposit the accumulated `storage_bytes` amount to.
pub storage_byte_deposit: BalanceOf<T>,
/// This records to how much deposit the accumulated `storage_items` amount to.
storage_item_deposit: BalanceOf<T>,
/// This records how much deposit is put down in order to pay for the contract itself.
///
/// We need to store this information separately so it is not used when calculating any refunds
/// since the base deposit can only ever be refunded on contract termination.
storage_base_deposit: BalanceOf<T>,
/// Map of code hashes and deposit balances.
///
/// Tracks the code hash and deposit held for locking delegate dependencies. Dependencies added
/// to the map can not be removed from the chain state and can be safely used for delegate
/// calls.
delegate_dependencies: BoundedBTreeMap<CodeHash<T>, BalanceOf<T>, T::MaxDelegateDependencies>,
}
impl<T: Config> ContractInfo<T> {
/// Constructs a new contract info **without** writing it to storage.
///
/// This returns an `Err` if an contract with the supplied `account` already exists
/// in storage.
pub fn new(
account: &AccountIdOf<T>,
nonce: u64,
code_hash: CodeHash<T>,
) -> Result<Self, DispatchError> {
if <ContractInfoOf<T>>::contains_key(account) {
return Err(Error::<T>::DuplicateContract.into())
}
let trie_id = {
let buf = (account, nonce).using_encoded(T::Hashing::hash);
buf.as_ref()
.to_vec()
.try_into()
.expect("Runtime uses a reasonable hash size. Hence sizeof(T::Hash) <= 128; qed")
};
let contract = Self {
trie_id,
code_hash,
storage_bytes: 0,
storage_items: 0,
storage_byte_deposit: Zero::zero(),
storage_item_deposit: Zero::zero(),
storage_base_deposit: Zero::zero(),
delegate_dependencies: Default::default(),
};
Ok(contract)
}
/// Returns the number of locked delegate dependencies.
pub fn delegate_dependencies_count(&self) -> usize {
self.delegate_dependencies.len()
}
/// Associated child trie unique id is built from the hash part of the trie id.
pub fn child_trie_info(&self) -> ChildInfo {
ChildInfo::new_default(self.trie_id.as_ref())
}
/// The deposit paying for the accumulated storage generated within the contract's child trie.
pub fn extra_deposit(&self) -> BalanceOf<T> {
self.storage_byte_deposit.saturating_add(self.storage_item_deposit)
}
/// Same as [`Self::extra_deposit`] but including the base deposit.
pub fn total_deposit(&self) -> BalanceOf<T> {
self.extra_deposit().saturating_add(self.storage_base_deposit)
}
/// Returns the storage base deposit of the contract.
pub fn storage_base_deposit(&self) -> BalanceOf<T> {
self.storage_base_deposit
}
/// Reads a storage kv pair of a contract.
///
/// The read is performed from the `trie_id` only. The `address` is not necessary. If the
/// contract doesn't store under the given `key` `None` is returned.
pub fn read(&self, key: &Key<T>) -> Option<Vec<u8>> {
child::get_raw(&self.child_trie_info(), key.hash().as_slice())
}
/// Returns `Some(len)` (in bytes) if a storage item exists at `key`.
///
/// Returns `None` if the `key` wasn't previously set by `set_storage` or
/// was deleted.
pub fn size(&self, key: &Key<T>) -> Option<u32> {
child::len(&self.child_trie_info(), key.hash().as_slice())
}
/// Update a storage entry into a contract's kv storage.
///
/// If the `new_value` is `None` then the kv pair is removed. If `take` is true
/// a [`WriteOutcome::Taken`] is returned instead of a [`WriteOutcome::Overwritten`].
///
/// This function also records how much storage was created or removed if a `storage_meter`
/// is supplied. It should only be absent for testing or benchmarking code.
pub fn write(
&self,
key: &Key<T>,
new_value: Option<Vec<u8>>,
storage_meter: Option<&mut meter::NestedMeter<T>>,
take: bool,
) -> Result<WriteOutcome, DispatchError> {
let hashed_key = key.hash();
self.write_raw(&hashed_key, new_value, storage_meter, take)
}
/// Update a storage entry into a contract's kv storage.
/// Function used in benchmarks, which can simulate prefix collision in keys.
#[cfg(feature = "runtime-benchmarks")]
pub fn bench_write_raw(
&self,
key: &[u8],
new_value: Option<Vec<u8>>,
take: bool,
) -> Result<WriteOutcome, DispatchError> {
self.write_raw(key, new_value, None, take)
}
fn write_raw(
&self,
key: &[u8],
new_value: Option<Vec<u8>>,
storage_meter: Option<&mut meter::NestedMeter<T>>,
take: bool,
) -> Result<WriteOutcome, DispatchError> {
let child_trie_info = &self.child_trie_info();
let (old_len, old_value) = if take {
let val = child::get_raw(child_trie_info, key);
(val.as_ref().map(|v| v.len() as u32), val)
} else {
(child::len(child_trie_info, key), None)
};
if let Some(storage_meter) = storage_meter {
let mut diff = meter::Diff::default();
match (old_len, new_value.as_ref().map(|v| v.len() as u32)) {
(Some(old_len), Some(new_len)) =>
if new_len > old_len {
diff.bytes_added = new_len - old_len;
} else {
diff.bytes_removed = old_len - new_len;
},
(None, Some(new_len)) => {
diff.bytes_added = new_len;
diff.items_added = 1;
},
(Some(old_len), None) => {
diff.bytes_removed = old_len;
diff.items_removed = 1;
},
(None, None) => (),
}
storage_meter.charge(&diff);
}
match &new_value {
Some(new_value) => child::put_raw(child_trie_info, key, new_value),
None => child::kill(child_trie_info, key),
}
Ok(match (old_len, old_value) {
(None, _) => WriteOutcome::New,
(Some(old_len), None) => WriteOutcome::Overwritten(old_len),
(Some(_), Some(old_value)) => WriteOutcome::Taken(old_value),
})
}
/// Sets and returns the contract base deposit.
///
/// The base deposit is updated when the `code_hash` of the contract changes, as it depends on
/// the deposit paid to upload the contract's code.
pub fn update_base_deposit(&mut self, code_info: &CodeInfo<T>) -> BalanceOf<T> {
let info_deposit =
Diff { bytes_added: self.encoded_size() as u32, items_added: 1, ..Default::default() }
.update_contract::<T>(None)
.charge_or_zero();
// Instantiating the contract prevents its code to be deleted, therefore the base deposit
// includes a fraction (`T::CodeHashLockupDepositPercent`) of the original storage deposit
// to prevent abuse.
let upload_deposit = T::CodeHashLockupDepositPercent::get().mul_ceil(code_info.deposit());
let deposit = info_deposit.saturating_add(upload_deposit);
self.storage_base_deposit = deposit;
deposit
}
/// Adds a new delegate dependency to the contract.
/// The `amount` is the amount of funds that will be reserved for the dependency.
///
/// Returns an error if the maximum number of delegate_dependencies is reached or if
/// the delegate dependency already exists.
pub fn lock_delegate_dependency(
&mut self,
code_hash: CodeHash<T>,
amount: BalanceOf<T>,
) -> DispatchResult {
self.delegate_dependencies
.try_insert(code_hash, amount)
.map_err(|_| Error::<T>::MaxDelegateDependenciesReached)?
.map_or(Ok(()), |_| Err(Error::<T>::DelegateDependencyAlreadyExists))
.map_err(Into::into)
}
/// Removes the delegate dependency from the contract and returns the deposit held for this
/// dependency.
///
/// Returns an error if the entry doesn't exist.
pub fn unlock_delegate_dependency(
&mut self,
code_hash: &CodeHash<T>,
) -> Result<BalanceOf<T>, DispatchError> {
self.delegate_dependencies
.remove(code_hash)
.ok_or(Error::<T>::DelegateDependencyNotFound.into())
}
/// Returns the delegate_dependencies of the contract.
pub fn delegate_dependencies(
&self,
) -> &BoundedBTreeMap<CodeHash<T>, BalanceOf<T>, T::MaxDelegateDependencies> {
&self.delegate_dependencies
}
/// Push a contract's trie to the deletion queue for lazy removal.
///
/// You must make sure that the contract is also removed when queuing the trie for deletion.
pub fn queue_trie_for_deletion(&self) {
DeletionQueueManager::<T>::load().insert(self.trie_id.clone());
}
/// Calculates the weight that is necessary to remove one key from the trie and how many
/// of those keys can be deleted from the deletion queue given the supplied weight limit.
pub fn deletion_budget(meter: &WeightMeter) -> (Weight, u32) {
let base_weight = T::WeightInfo::on_process_deletion_queue_batch();
let weight_per_key = T::WeightInfo::on_initialize_per_trie_key(1) -
T::WeightInfo::on_initialize_per_trie_key(0);
// `weight_per_key` being zero makes no sense and would constitute a failure to
// benchmark properly. We opt for not removing any keys at all in this case.
let key_budget = meter
.limit()
.saturating_sub(base_weight)
.checked_div_per_component(&weight_per_key)
.unwrap_or(0) as u32;
(weight_per_key, key_budget)
}
/// Delete as many items from the deletion queue possible within the supplied weight limit.
pub fn process_deletion_queue_batch(meter: &mut WeightMeter) {
if meter.try_consume(T::WeightInfo::on_process_deletion_queue_batch()).is_err() {
return
};
let mut queue = <DeletionQueueManager<T>>::load();
if queue.is_empty() {
return;
}
let (weight_per_key, budget) = Self::deletion_budget(&meter);
let mut remaining_key_budget = budget;
while remaining_key_budget > 0 {
let Some(entry) = queue.next() else { break };
#[allow(deprecated)]
let outcome = child::kill_storage(
&ChildInfo::new_default(&entry.trie_id),
Some(remaining_key_budget),
);
match outcome {
// This happens when our budget wasn't large enough to remove all keys.
KillStorageResult::SomeRemaining(keys_removed) => {
remaining_key_budget.saturating_reduce(keys_removed);
break
},
KillStorageResult::AllRemoved(keys_removed) => {
entry.remove();
// charge at least one key even if none were removed.
remaining_key_budget = remaining_key_budget.saturating_sub(keys_removed.max(1));
},
};
}
meter.consume(weight_per_key.saturating_mul(u64::from(budget - remaining_key_budget)))
}
/// Returns the code hash of the contract specified by `account` ID.
pub fn load_code_hash(account: &AccountIdOf<T>) -> Option<CodeHash<T>> {
<ContractInfoOf<T>>::get(account).map(|i| i.code_hash)
}
}
/// Information about what happened to the pre-existing value when calling [`ContractInfo::write`].
#[cfg_attr(any(test, feature = "runtime-benchmarks"), derive(Debug, PartialEq))]
pub enum WriteOutcome {
/// No value existed at the specified key.
New,
/// A value of the returned length was overwritten.
Overwritten(u32),
/// The returned value was taken out of storage before being overwritten.
///
/// This is only returned when specifically requested because it causes additional work
/// depending on the size of the pre-existing value. When not requested [`Self::Overwritten`]
/// is returned instead.
Taken(Vec<u8>),
}
impl WriteOutcome {
/// Extracts the size of the overwritten value or `0` if there
/// was no value in storage.
pub fn old_len(&self) -> u32 {
match self {
Self::New => 0,
Self::Overwritten(len) => *len,
Self::Taken(value) => value.len() as u32,
}
}
/// Extracts the size of the overwritten value or `SENTINEL` if there
/// was no value in storage.
///
/// # Note
///
/// We cannot use `0` as sentinel value because there could be a zero sized
/// storage entry which is different from a non existing one.
pub fn old_len_with_sentinel(&self) -> u32 {
match self {
Self::New => SENTINEL,
Self::Overwritten(len) => *len,
Self::Taken(value) => value.len() as u32,
}
}
}
/// Manage the removal of contracts storage that are marked for deletion.
///
/// When a contract is deleted by calling `seal_terminate` it becomes inaccessible
/// immediately, but the deletion of the storage items it has accumulated is performed
/// later by pulling the contract from the queue in the `on_idle` hook.
#[derive(Encode, Decode, TypeInfo, MaxEncodedLen, DefaultNoBound, Clone)]
#[scale_info(skip_type_params(T))]
pub struct DeletionQueueManager<T: Config> {
/// Counter used as a key for inserting a new deleted contract in the queue.
/// The counter is incremented after each insertion.
insert_counter: u32,
/// The index used to read the next element to be deleted in the queue.
/// The counter is incremented after each deletion.
delete_counter: u32,
_phantom: PhantomData<T>,
}
/// View on a contract that is marked for deletion.
struct DeletionQueueEntry<'a, T: Config> {
/// the trie id of the contract to delete.
trie_id: TrieId,
/// A mutable reference on the queue so that the contract can be removed, and none can be added
/// or read in the meantime.
queue: &'a mut DeletionQueueManager<T>,
}
impl<'a, T: Config> DeletionQueueEntry<'a, T> {
/// Remove the contract from the deletion queue.
fn remove(self) {
<DeletionQueue<T>>::remove(self.queue.delete_counter);
self.queue.delete_counter = self.queue.delete_counter.wrapping_add(1);
<DeletionQueueCounter<T>>::set(self.queue.clone());
}
}
impl<T: Config> DeletionQueueManager<T> {
/// Load the `DeletionQueueCounter`, so we can perform read or write operations on the
/// DeletionQueue storage.
fn load() -> Self {
<DeletionQueueCounter<T>>::get()
}
/// Returns `true` if the queue contains no elements.
fn is_empty(&self) -> bool {
self.insert_counter.wrapping_sub(self.delete_counter) == 0
}
/// Insert a contract in the deletion queue.
fn insert(&mut self, trie_id: TrieId) {
<DeletionQueue<T>>::insert(self.insert_counter, trie_id);
self.insert_counter = self.insert_counter.wrapping_add(1);
<DeletionQueueCounter<T>>::set(self.clone());
}
/// Fetch the next contract to be deleted.
///
/// Note:
/// we use the delete counter to get the next value to read from the queue and thus don't pay
/// the cost of an extra call to `sp_io::storage::next_key` to lookup the next entry in the map
fn next(&mut self) -> Option<DeletionQueueEntry<T>> {
if self.is_empty() {
return None
}
let entry = <DeletionQueue<T>>::get(self.delete_counter);
entry.map(|trie_id| DeletionQueueEntry { trie_id, queue: self })
}
}
#[cfg(test)]
impl<T: Config> DeletionQueueManager<T> {
pub fn from_test_values(insert_counter: u32, delete_counter: u32) -> Self {
Self { insert_counter, delete_counter, _phantom: Default::default() }
}
pub fn as_test_tuple(&self) -> (u32, u32) {
(self.insert_counter, self.delete_counter)
}
}