referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: 2023 Snowfork <hello@snowfork.com>
//! Pallet for committing outbound messages for delivery to Ethereum
//!
//! # Overview
//!
//! Messages come either from sibling parachains via XCM, or BridgeHub itself
//! via the `snowbridge-pallet-system`:
//!
//! 1. `snowbridge_router_primitives::outbound::EthereumBlobExporter::deliver`
//! 2. `snowbridge_pallet_system::Pallet::send`
//!
//! The message submission pipeline works like this:
//! 1. The message is first validated via the implementation for
//!    [`snowbridge_core::outbound::SendMessage::validate`]
//! 2. The message is then enqueued for later processing via the implementation for
//!    [`snowbridge_core::outbound::SendMessage::deliver`]
//! 3. The underlying message queue is implemented by [`Config::MessageQueue`]
//! 4. The message queue delivers messages back to this pallet via the implementation for
//!    [`frame_support::traits::ProcessMessage::process_message`]
//! 5. The message is processed in `Pallet::do_process_message`: a. Assigned a nonce b. ABI-encoded,
//!    hashed, and stored in the `MessageLeaves` vector
//! 6. At the end of the block, a merkle root is constructed from all the leaves in `MessageLeaves`.
//! 7. This merkle root is inserted into the parachain header as a digest item
//! 8. Offchain relayers are able to relay the message to Ethereum after: a. Generating a merkle
//!    proof for the committed message using the `prove_message` runtime API b. Reading the actual
//!    message content from the `Messages` vector in storage
//!
//! On the Ethereum side, the message root is ultimately the thing being
//! verified by the Polkadot light client.
//!
//! # Message Priorities
//!
//! The processing of governance commands can never be halted. This effectively
//! allows us to pause processing of normal user messages while still allowing
//! governance commands to be sent to Ethereum.
//!
//! # Fees
//!
//! An upfront fee must be paid for delivering a message. This fee covers several
//! components:
//! 1. The weight of processing the message locally
//! 2. The gas refund paid out to relayers for message submission
//! 3. An additional reward paid out to relayers for message submission
//!
//! Messages are weighed to determine the maximum amount of gas they could
//! consume on Ethereum. Using this upper bound, a final fee can be calculated.
//!
//! The fee calculation also requires the following parameters:
//! * Average ETH/DOT exchange rate over some period
//! * Max fee per unit of gas that bridge is willing to refund relayers for
//!
//! By design, it is expected that governance should manually update these
//! parameters every few weeks using the `set_pricing_parameters` extrinsic in the
//! system pallet.
//!
//! This is an interim measure. Once ETH/DOT liquidity pools are available in the Polkadot network,
//! we'll use them as a source of pricing info, subject to certain safeguards.
//!
//! ## Fee Computation Function
//!
//! ```text
//! LocalFee(Message) = WeightToFee(ProcessMessageWeight(Message))
//! RemoteFee(Message) = MaxGasRequired(Message) * Params.MaxFeePerGas + Params.Reward
//! RemoteFeeAdjusted(Message) = Params.Multiplier * (RemoteFee(Message) / Params.Ratio("ETH/DOT"))
//! Fee(Message) = LocalFee(Message) + RemoteFeeAdjusted(Message)
//! ```
//!
//! By design, the computed fee includes a safety factor (the `Multiplier`) to cover
//! unfavourable fluctuations in the ETH/DOT exchange rate.
//!
//! ## Fee Settlement
//!
//! On the remote side, in the gateway contract, the relayer accrues
//!
//! ```text
//! Min(GasPrice, Message.MaxFeePerGas) * GasUsed() + Message.Reward
//! ```
//! Or in plain english, relayers are refunded for gas consumption, using a
//! price that is a minimum of the actual gas price, or `Message.MaxFeePerGas`.
//!
//! # Extrinsics
//!
//! * [`Call::set_operating_mode`]: Set the operating mode
//!
//! # Runtime API
//!
//! * `prove_message`: Generate a merkle proof for a committed message
//! * `calculate_fee`: Calculate the delivery fee for a message
#![cfg_attr(not(feature = "std"), no_std)]
pub mod api;
pub mod process_message_impl;
pub mod send_message_impl;
pub mod types;
pub mod weights;

#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;

#[cfg(test)]
mod mock;

#[cfg(test)]
mod test;

use bridge_hub_common::{AggregateMessageOrigin, CustomDigestItem};
use codec::Decode;
use frame_support::{
	storage::StorageStreamIter,
	traits::{tokens::Balance, Contains, Defensive, EnqueueMessage, Get, ProcessMessageError},
	weights::{Weight, WeightToFee},
};
use snowbridge_core::{
	outbound::{Fee, GasMeter, QueuedMessage, VersionedQueuedMessage, ETHER_DECIMALS},
	BasicOperatingMode, ChannelId,
};
use snowbridge_outbound_queue_merkle_tree::merkle_root;
pub use snowbridge_outbound_queue_merkle_tree::MerkleProof;
use sp_core::{H256, U256};
use sp_runtime::{
	traits::{CheckedDiv, Hash},
	DigestItem, Saturating,
};
use sp_std::prelude::*;
pub use types::{CommittedMessage, ProcessMessageOriginOf};
pub use weights::WeightInfo;

pub use pallet::*;

#[frame_support::pallet]
pub mod pallet {
	use super::*;
	use frame_support::pallet_prelude::*;
	use frame_system::pallet_prelude::*;
	use snowbridge_core::PricingParameters;
	use sp_arithmetic::FixedU128;

	#[pallet::pallet]
	pub struct Pallet<T>(_);

	#[pallet::config]
	pub trait Config: frame_system::Config {
		type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;

		type Hashing: Hash<Output = H256>;

		type MessageQueue: EnqueueMessage<AggregateMessageOrigin>;

		/// Measures the maximum gas used to execute a command on Ethereum
		type GasMeter: GasMeter;

		type Balance: Balance + From<u128>;

		/// Number of decimal places in native currency
		#[pallet::constant]
		type Decimals: Get<u8>;

		/// Max bytes in a message payload
		#[pallet::constant]
		type MaxMessagePayloadSize: Get<u32>;

		/// Max number of messages processed per block
		#[pallet::constant]
		type MaxMessagesPerBlock: Get<u32>;

		/// Check whether a channel exists
		type Channels: Contains<ChannelId>;

		type PricingParameters: Get<PricingParameters<Self::Balance>>;

		/// Convert a weight value into a deductible fee based.
		type WeightToFee: WeightToFee<Balance = Self::Balance>;

		/// Weight information for extrinsics in this pallet
		type WeightInfo: WeightInfo;
	}

	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event<T: Config> {
		/// Message has been queued and will be processed in the future
		MessageQueued {
			/// ID of the message. Usually the XCM message hash or a SetTopic.
			id: H256,
		},
		/// Message will be committed at the end of current block. From now on, to track the
		/// progress the message, use the `nonce` of `id`.
		MessageAccepted {
			/// ID of the message
			id: H256,
			/// The nonce assigned to this message
			nonce: u64,
		},
		/// Some messages have been committed
		MessagesCommitted {
			/// Merkle root of the committed messages
			root: H256,
			/// number of committed messages
			count: u64,
		},
		/// Set OperatingMode
		OperatingModeChanged { mode: BasicOperatingMode },
	}

	#[pallet::error]
	pub enum Error<T> {
		/// The message is too large
		MessageTooLarge,
		/// The pallet is halted
		Halted,
		/// Invalid Channel
		InvalidChannel,
	}

	/// Messages to be committed in the current block. This storage value is killed in
	/// `on_initialize`, so should never go into block PoV.
	///
	/// Is never read in the runtime, only by offchain message relayers.
	///
	/// Inspired by the `frame_system::Pallet::Events` storage value
	#[pallet::storage]
	#[pallet::unbounded]
	pub(super) type Messages<T: Config> = StorageValue<_, Vec<CommittedMessage>, ValueQuery>;

	/// Hashes of the ABI-encoded messages in the [`Messages`] storage value. Used to generate a
	/// merkle root during `on_finalize`. This storage value is killed in
	/// `on_initialize`, so should never go into block PoV.
	#[pallet::storage]
	#[pallet::unbounded]
	#[pallet::getter(fn message_leaves)]
	pub(super) type MessageLeaves<T: Config> = StorageValue<_, Vec<H256>, ValueQuery>;

	/// The current nonce for each message origin
	#[pallet::storage]
	pub type Nonce<T: Config> = StorageMap<_, Twox64Concat, ChannelId, u64, ValueQuery>;

	/// The current operating mode of the pallet.
	#[pallet::storage]
	#[pallet::getter(fn operating_mode)]
	pub type OperatingMode<T: Config> = StorageValue<_, BasicOperatingMode, ValueQuery>;

	#[pallet::hooks]
	impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T>
	where
		T::AccountId: AsRef<[u8]>,
	{
		fn on_initialize(_: BlockNumberFor<T>) -> Weight {
			// Remove storage from previous block
			Messages::<T>::kill();
			MessageLeaves::<T>::kill();
			// Reserve some weight for the `on_finalize` handler
			T::WeightInfo::commit()
		}

		fn on_finalize(_: BlockNumberFor<T>) {
			Self::commit();
		}

		fn integrity_test() {
			let decimals = T::Decimals::get();
			assert!(decimals == 10 || decimals == 12, "Decimals should be 10 or 12");
		}
	}

	#[pallet::call]
	impl<T: Config> Pallet<T> {
		/// Halt or resume all pallet operations. May only be called by root.
		#[pallet::call_index(0)]
		#[pallet::weight((T::DbWeight::get().reads_writes(1, 1), DispatchClass::Operational))]
		pub fn set_operating_mode(
			origin: OriginFor<T>,
			mode: BasicOperatingMode,
		) -> DispatchResult {
			ensure_root(origin)?;
			OperatingMode::<T>::put(mode);
			Self::deposit_event(Event::OperatingModeChanged { mode });
			Ok(())
		}
	}

	impl<T: Config> Pallet<T> {
		/// Generate a messages commitment and insert it into the header digest
		pub(crate) fn commit() {
			let count = MessageLeaves::<T>::decode_len().unwrap_or_default() as u64;
			if count == 0 {
				return
			}

			// Create merkle root of messages
			let root = merkle_root::<<T as Config>::Hashing, _>(MessageLeaves::<T>::stream_iter());

			let digest_item: DigestItem = CustomDigestItem::Snowbridge(root).into();

			// Insert merkle root into the header digest
			<frame_system::Pallet<T>>::deposit_log(digest_item);

			Self::deposit_event(Event::MessagesCommitted { root, count });
		}

		/// Process a message delivered by the MessageQueue pallet
		pub(crate) fn do_process_message(
			_: ProcessMessageOriginOf<T>,
			mut message: &[u8],
		) -> Result<bool, ProcessMessageError> {
			use ProcessMessageError::*;

			// Yield if the maximum number of messages has been processed this block.
			// This ensures that the weight of `on_finalize` has a known maximum bound.
			ensure!(
				MessageLeaves::<T>::decode_len().unwrap_or(0) <
					T::MaxMessagesPerBlock::get() as usize,
				Yield
			);

			// Decode bytes into versioned message
			let versioned_queued_message: VersionedQueuedMessage =
				VersionedQueuedMessage::decode(&mut message).map_err(|_| Corrupt)?;

			// Convert versioned message into latest supported message version
			let queued_message: QueuedMessage =
				versioned_queued_message.try_into().map_err(|_| Unsupported)?;

			// Obtain next nonce
			let nonce = <Nonce<T>>::try_mutate(
				queued_message.channel_id,
				|nonce| -> Result<u64, ProcessMessageError> {
					*nonce = nonce.checked_add(1).ok_or(Unsupported)?;
					Ok(*nonce)
				},
			)?;

			let pricing_params = T::PricingParameters::get();
			let command = queued_message.command.index();
			let params = queued_message.command.abi_encode();
			let max_dispatch_gas =
				T::GasMeter::maximum_dispatch_gas_used_at_most(&queued_message.command);
			let reward = pricing_params.rewards.remote;

			// Construct the final committed message
			let message = CommittedMessage {
				channel_id: queued_message.channel_id,
				nonce,
				command,
				params,
				max_dispatch_gas,
				max_fee_per_gas: pricing_params
					.fee_per_gas
					.try_into()
					.defensive_unwrap_or(u128::MAX),
				reward: reward.try_into().defensive_unwrap_or(u128::MAX),
				id: queued_message.id,
			};

			// ABI-encode and hash the prepared message
			let message_abi_encoded = ethabi::encode(&[message.clone().into()]);
			let message_abi_encoded_hash = <T as Config>::Hashing::hash(&message_abi_encoded);

			Messages::<T>::append(Box::new(message));
			MessageLeaves::<T>::append(message_abi_encoded_hash);

			Self::deposit_event(Event::MessageAccepted { id: queued_message.id, nonce });

			Ok(true)
		}

		/// Calculate total fee in native currency to cover all costs of delivering a message to the
		/// remote destination. See module-level documentation for more details.
		pub(crate) fn calculate_fee(
			gas_used_at_most: u64,
			params: PricingParameters<T::Balance>,
		) -> Fee<T::Balance> {
			// Remote fee in ether
			let fee = Self::calculate_remote_fee(
				gas_used_at_most,
				params.fee_per_gas,
				params.rewards.remote,
			);

			// downcast to u128
			let fee: u128 = fee.try_into().defensive_unwrap_or(u128::MAX);

			// multiply by multiplier and convert to local currency
			let fee = FixedU128::from_inner(fee)
				.saturating_mul(params.multiplier)
				.checked_div(&params.exchange_rate)
				.expect("exchange rate is not zero; qed")
				.into_inner();

			// adjust fixed point to match local currency
			let fee = Self::convert_from_ether_decimals(fee);

			Fee::from((Self::calculate_local_fee(), fee))
		}

		/// Calculate fee in remote currency for dispatching a message on Ethereum
		pub(crate) fn calculate_remote_fee(
			gas_used_at_most: u64,
			fee_per_gas: U256,
			reward: U256,
		) -> U256 {
			fee_per_gas.saturating_mul(gas_used_at_most.into()).saturating_add(reward)
		}

		/// The local component of the message processing fees in native currency
		pub(crate) fn calculate_local_fee() -> T::Balance {
			T::WeightToFee::weight_to_fee(
				&T::WeightInfo::do_process_message().saturating_add(T::WeightInfo::commit_single()),
			)
		}

		// 1 DOT has 10 digits of precision
		// 1 KSM has 12 digits of precision
		// 1 ETH has 18 digits of precision
		pub(crate) fn convert_from_ether_decimals(value: u128) -> T::Balance {
			let decimals = ETHER_DECIMALS.saturating_sub(T::Decimals::get()) as u32;
			let denom = 10u128.saturating_pow(decimals);
			value.checked_div(denom).expect("divisor is non-zero; qed").into()
		}
	}
}