1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: 2023 Snowfork <hello@snowfork.com>
//! Pallet for committing outbound messages for delivery to Ethereum
//!
//! # Overview
//!
//! Messages come either from sibling parachains via XCM, or BridgeHub itself
//! via the `snowbridge-pallet-system`:
//!
//! 1. `snowbridge_router_primitives::outbound::EthereumBlobExporter::deliver`
//! 2. `snowbridge_pallet_system::Pallet::send`
//!
//! The message submission pipeline works like this:
//! 1. The message is first validated via the implementation for
//! [`snowbridge_core::outbound::SendMessage::validate`]
//! 2. The message is then enqueued for later processing via the implementation for
//! [`snowbridge_core::outbound::SendMessage::deliver`]
//! 3. The underlying message queue is implemented by [`Config::MessageQueue`]
//! 4. The message queue delivers messages back to this pallet via the implementation for
//! [`frame_support::traits::ProcessMessage::process_message`]
//! 5. The message is processed in `Pallet::do_process_message`: a. Assigned a nonce b. ABI-encoded,
//! hashed, and stored in the `MessageLeaves` vector
//! 6. At the end of the block, a merkle root is constructed from all the leaves in `MessageLeaves`.
//! 7. This merkle root is inserted into the parachain header as a digest item
//! 8. Offchain relayers are able to relay the message to Ethereum after: a. Generating a merkle
//! proof for the committed message using the `prove_message` runtime API b. Reading the actual
//! message content from the `Messages` vector in storage
//!
//! On the Ethereum side, the message root is ultimately the thing being
//! verified by the Polkadot light client.
//!
//! # Message Priorities
//!
//! The processing of governance commands can never be halted. This effectively
//! allows us to pause processing of normal user messages while still allowing
//! governance commands to be sent to Ethereum.
//!
//! # Fees
//!
//! An upfront fee must be paid for delivering a message. This fee covers several
//! components:
//! 1. The weight of processing the message locally
//! 2. The gas refund paid out to relayers for message submission
//! 3. An additional reward paid out to relayers for message submission
//!
//! Messages are weighed to determine the maximum amount of gas they could
//! consume on Ethereum. Using this upper bound, a final fee can be calculated.
//!
//! The fee calculation also requires the following parameters:
//! * Average ETH/DOT exchange rate over some period
//! * Max fee per unit of gas that bridge is willing to refund relayers for
//!
//! By design, it is expected that governance should manually update these
//! parameters every few weeks using the `set_pricing_parameters` extrinsic in the
//! system pallet.
//!
//! This is an interim measure. Once ETH/DOT liquidity pools are available in the Polkadot network,
//! we'll use them as a source of pricing info, subject to certain safeguards.
//!
//! ## Fee Computation Function
//!
//! ```text
//! LocalFee(Message) = WeightToFee(ProcessMessageWeight(Message))
//! RemoteFee(Message) = MaxGasRequired(Message) * Params.MaxFeePerGas + Params.Reward
//! RemoteFeeAdjusted(Message) = Params.Multiplier * (RemoteFee(Message) / Params.Ratio("ETH/DOT"))
//! Fee(Message) = LocalFee(Message) + RemoteFeeAdjusted(Message)
//! ```
//!
//! By design, the computed fee includes a safety factor (the `Multiplier`) to cover
//! unfavourable fluctuations in the ETH/DOT exchange rate.
//!
//! ## Fee Settlement
//!
//! On the remote side, in the gateway contract, the relayer accrues
//!
//! ```text
//! Min(GasPrice, Message.MaxFeePerGas) * GasUsed() + Message.Reward
//! ```
//! Or in plain english, relayers are refunded for gas consumption, using a
//! price that is a minimum of the actual gas price, or `Message.MaxFeePerGas`.
//!
//! # Extrinsics
//!
//! * [`Call::set_operating_mode`]: Set the operating mode
//!
//! # Runtime API
//!
//! * `prove_message`: Generate a merkle proof for a committed message
//! * `calculate_fee`: Calculate the delivery fee for a message
#![cfg_attr(not(feature = "std"), no_std)]
pub mod api;
pub mod process_message_impl;
pub mod send_message_impl;
pub mod types;
pub mod weights;
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
#[cfg(test)]
mod mock;
#[cfg(test)]
mod test;
use bridge_hub_common::{AggregateMessageOrigin, CustomDigestItem};
use codec::Decode;
use frame_support::{
storage::StorageStreamIter,
traits::{tokens::Balance, Contains, Defensive, EnqueueMessage, Get, ProcessMessageError},
weights::{Weight, WeightToFee},
};
use snowbridge_core::{
outbound::{Fee, GasMeter, QueuedMessage, VersionedQueuedMessage, ETHER_DECIMALS},
BasicOperatingMode, ChannelId,
};
use snowbridge_outbound_queue_merkle_tree::merkle_root;
pub use snowbridge_outbound_queue_merkle_tree::MerkleProof;
use sp_core::{H256, U256};
use sp_runtime::{
traits::{CheckedDiv, Hash},
DigestItem, Saturating,
};
use sp_std::prelude::*;
pub use types::{CommittedMessage, ProcessMessageOriginOf};
pub use weights::WeightInfo;
pub use pallet::*;
#[frame_support::pallet]
pub mod pallet {
use super::*;
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
use snowbridge_core::PricingParameters;
use sp_arithmetic::FixedU128;
#[pallet::pallet]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config {
type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
type Hashing: Hash<Output = H256>;
type MessageQueue: EnqueueMessage<AggregateMessageOrigin>;
/// Measures the maximum gas used to execute a command on Ethereum
type GasMeter: GasMeter;
type Balance: Balance + From<u128>;
/// Number of decimal places in native currency
#[pallet::constant]
type Decimals: Get<u8>;
/// Max bytes in a message payload
#[pallet::constant]
type MaxMessagePayloadSize: Get<u32>;
/// Max number of messages processed per block
#[pallet::constant]
type MaxMessagesPerBlock: Get<u32>;
/// Check whether a channel exists
type Channels: Contains<ChannelId>;
type PricingParameters: Get<PricingParameters<Self::Balance>>;
/// Convert a weight value into a deductible fee based.
type WeightToFee: WeightToFee<Balance = Self::Balance>;
/// Weight information for extrinsics in this pallet
type WeightInfo: WeightInfo;
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// Message has been queued and will be processed in the future
MessageQueued {
/// ID of the message. Usually the XCM message hash or a SetTopic.
id: H256,
},
/// Message will be committed at the end of current block. From now on, to track the
/// progress the message, use the `nonce` of `id`.
MessageAccepted {
/// ID of the message
id: H256,
/// The nonce assigned to this message
nonce: u64,
},
/// Some messages have been committed
MessagesCommitted {
/// Merkle root of the committed messages
root: H256,
/// number of committed messages
count: u64,
},
/// Set OperatingMode
OperatingModeChanged { mode: BasicOperatingMode },
}
#[pallet::error]
pub enum Error<T> {
/// The message is too large
MessageTooLarge,
/// The pallet is halted
Halted,
/// Invalid Channel
InvalidChannel,
}
/// Messages to be committed in the current block. This storage value is killed in
/// `on_initialize`, so should never go into block PoV.
///
/// Is never read in the runtime, only by offchain message relayers.
///
/// Inspired by the `frame_system::Pallet::Events` storage value
#[pallet::storage]
#[pallet::unbounded]
pub(super) type Messages<T: Config> = StorageValue<_, Vec<CommittedMessage>, ValueQuery>;
/// Hashes of the ABI-encoded messages in the [`Messages`] storage value. Used to generate a
/// merkle root during `on_finalize`. This storage value is killed in
/// `on_initialize`, so should never go into block PoV.
#[pallet::storage]
#[pallet::unbounded]
#[pallet::getter(fn message_leaves)]
pub(super) type MessageLeaves<T: Config> = StorageValue<_, Vec<H256>, ValueQuery>;
/// The current nonce for each message origin
#[pallet::storage]
pub type Nonce<T: Config> = StorageMap<_, Twox64Concat, ChannelId, u64, ValueQuery>;
/// The current operating mode of the pallet.
#[pallet::storage]
#[pallet::getter(fn operating_mode)]
pub type OperatingMode<T: Config> = StorageValue<_, BasicOperatingMode, ValueQuery>;
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T>
where
T::AccountId: AsRef<[u8]>,
{
fn on_initialize(_: BlockNumberFor<T>) -> Weight {
// Remove storage from previous block
Messages::<T>::kill();
MessageLeaves::<T>::kill();
// Reserve some weight for the `on_finalize` handler
T::WeightInfo::commit()
}
fn on_finalize(_: BlockNumberFor<T>) {
Self::commit();
}
fn integrity_test() {
let decimals = T::Decimals::get();
assert!(decimals == 10 || decimals == 12, "Decimals should be 10 or 12");
}
}
#[pallet::call]
impl<T: Config> Pallet<T> {
/// Halt or resume all pallet operations. May only be called by root.
#[pallet::call_index(0)]
#[pallet::weight((T::DbWeight::get().reads_writes(1, 1), DispatchClass::Operational))]
pub fn set_operating_mode(
origin: OriginFor<T>,
mode: BasicOperatingMode,
) -> DispatchResult {
ensure_root(origin)?;
OperatingMode::<T>::put(mode);
Self::deposit_event(Event::OperatingModeChanged { mode });
Ok(())
}
}
impl<T: Config> Pallet<T> {
/// Generate a messages commitment and insert it into the header digest
pub(crate) fn commit() {
let count = MessageLeaves::<T>::decode_len().unwrap_or_default() as u64;
if count == 0 {
return
}
// Create merkle root of messages
let root = merkle_root::<<T as Config>::Hashing, _>(MessageLeaves::<T>::stream_iter());
let digest_item: DigestItem = CustomDigestItem::Snowbridge(root).into();
// Insert merkle root into the header digest
<frame_system::Pallet<T>>::deposit_log(digest_item);
Self::deposit_event(Event::MessagesCommitted { root, count });
}
/// Process a message delivered by the MessageQueue pallet
pub(crate) fn do_process_message(
_: ProcessMessageOriginOf<T>,
mut message: &[u8],
) -> Result<bool, ProcessMessageError> {
use ProcessMessageError::*;
// Yield if the maximum number of messages has been processed this block.
// This ensures that the weight of `on_finalize` has a known maximum bound.
ensure!(
MessageLeaves::<T>::decode_len().unwrap_or(0) <
T::MaxMessagesPerBlock::get() as usize,
Yield
);
// Decode bytes into versioned message
let versioned_queued_message: VersionedQueuedMessage =
VersionedQueuedMessage::decode(&mut message).map_err(|_| Corrupt)?;
// Convert versioned message into latest supported message version
let queued_message: QueuedMessage =
versioned_queued_message.try_into().map_err(|_| Unsupported)?;
// Obtain next nonce
let nonce = <Nonce<T>>::try_mutate(
queued_message.channel_id,
|nonce| -> Result<u64, ProcessMessageError> {
*nonce = nonce.checked_add(1).ok_or(Unsupported)?;
Ok(*nonce)
},
)?;
let pricing_params = T::PricingParameters::get();
let command = queued_message.command.index();
let params = queued_message.command.abi_encode();
let max_dispatch_gas =
T::GasMeter::maximum_dispatch_gas_used_at_most(&queued_message.command);
let reward = pricing_params.rewards.remote;
// Construct the final committed message
let message = CommittedMessage {
channel_id: queued_message.channel_id,
nonce,
command,
params,
max_dispatch_gas,
max_fee_per_gas: pricing_params
.fee_per_gas
.try_into()
.defensive_unwrap_or(u128::MAX),
reward: reward.try_into().defensive_unwrap_or(u128::MAX),
id: queued_message.id,
};
// ABI-encode and hash the prepared message
let message_abi_encoded = ethabi::encode(&[message.clone().into()]);
let message_abi_encoded_hash = <T as Config>::Hashing::hash(&message_abi_encoded);
Messages::<T>::append(Box::new(message));
MessageLeaves::<T>::append(message_abi_encoded_hash);
Self::deposit_event(Event::MessageAccepted { id: queued_message.id, nonce });
Ok(true)
}
/// Calculate total fee in native currency to cover all costs of delivering a message to the
/// remote destination. See module-level documentation for more details.
pub(crate) fn calculate_fee(
gas_used_at_most: u64,
params: PricingParameters<T::Balance>,
) -> Fee<T::Balance> {
// Remote fee in ether
let fee = Self::calculate_remote_fee(
gas_used_at_most,
params.fee_per_gas,
params.rewards.remote,
);
// downcast to u128
let fee: u128 = fee.try_into().defensive_unwrap_or(u128::MAX);
// multiply by multiplier and convert to local currency
let fee = FixedU128::from_inner(fee)
.saturating_mul(params.multiplier)
.checked_div(¶ms.exchange_rate)
.expect("exchange rate is not zero; qed")
.into_inner();
// adjust fixed point to match local currency
let fee = Self::convert_from_ether_decimals(fee);
Fee::from((Self::calculate_local_fee(), fee))
}
/// Calculate fee in remote currency for dispatching a message on Ethereum
pub(crate) fn calculate_remote_fee(
gas_used_at_most: u64,
fee_per_gas: U256,
reward: U256,
) -> U256 {
fee_per_gas.saturating_mul(gas_used_at_most.into()).saturating_add(reward)
}
/// The local component of the message processing fees in native currency
pub(crate) fn calculate_local_fee() -> T::Balance {
T::WeightToFee::weight_to_fee(
&T::WeightInfo::do_process_message().saturating_add(T::WeightInfo::commit_single()),
)
}
// 1 DOT has 10 digits of precision
// 1 KSM has 12 digits of precision
// 1 ETH has 18 digits of precision
pub(crate) fn convert_from_ether_decimals(value: u128) -> T::Balance {
let decimals = ETHER_DECIMALS.saturating_sub(T::Decimals::get()) as u32;
let denom = 10u128.saturating_pow(decimals);
value.checked_div(denom).expect("divisor is non-zero; qed").into()
}
}
}