referrerpolicy=no-referrer-when-downgrade

cumulus_client_consensus_aura/collators/slot_based/
slot_timer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Cumulus.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// Cumulus is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Cumulus is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Cumulus. If not, see <https://www.gnu.org/licenses/>.

use crate::LOG_TARGET;
use codec::Codec;
use cumulus_primitives_aura::Slot;
use cumulus_primitives_core::BlockT;
use sc_client_api::UsageProvider;
use sc_consensus_aura::SlotDuration;
use sp_api::ProvideRuntimeApi;
use sp_application_crypto::AppPublic;
use sp_consensus_aura::AuraApi;
use sp_core::Pair;
use sp_runtime::traits::Member;
use sp_timestamp::Timestamp;
use std::{
	cmp::{max, min},
	sync::Arc,
	time::Duration,
};

/// Lower limits of allowed block production interval.
/// Defensive mechanism, corresponds to 12 cores at 6 second block time.
const BLOCK_PRODUCTION_MINIMUM_INTERVAL_MS: Duration = Duration::from_millis(500);

#[derive(Debug)]
pub(crate) struct SlotInfo {
	pub timestamp: Timestamp,
	pub slot: Slot,
}

/// Manages block-production timings based on chain parameters and assigned cores.
#[derive(Debug)]
pub(crate) struct SlotTimer<Block, Client, P> {
	/// Client that is used for runtime calls
	client: Arc<Client>,
	/// Offset the current time by this duration.
	time_offset: Duration,
	/// Last reported core count.
	last_reported_core_num: Option<u32>,
	/// Slot duration of the relay chain. This is used to compute how man block-production
	/// attempts we should trigger per relay chain block.
	relay_slot_duration: Duration,
	_marker: std::marker::PhantomData<(Block, Box<dyn Fn(P) + Send + Sync + 'static>)>,
}

/// Compute when to try block-authoring next.
/// The exact time point is determined by the slot duration of relay- and parachain as
/// well as the last observed core count. If more cores are available, we attempt to author blocks
/// for them.
///
/// Returns a tuple with:
/// - `Duration`: How long to wait until the next slot.
/// - `Timestamp`: The timestamp to pass to the inherent
/// - `Slot`: The AURA slot used for authoring
fn compute_next_wake_up_time(
	para_slot_duration: SlotDuration,
	relay_slot_duration: Duration,
	core_count: Option<u32>,
	time_now: Duration,
	time_offset: Duration,
) -> (Duration, Timestamp, Slot) {
	let para_slots_per_relay_block =
		(relay_slot_duration.as_millis() / para_slot_duration.as_millis() as u128) as u32;
	let assigned_core_num = core_count.unwrap_or(1);

	// Trigger at least once per relay block, if we have for example 12 second slot duration,
	// we should still produce two blocks if we are scheduled on every relay block.
	let mut block_production_interval = min(para_slot_duration.as_duration(), relay_slot_duration);

	if assigned_core_num > para_slots_per_relay_block &&
		para_slot_duration.as_duration() >= relay_slot_duration
	{
		block_production_interval =
			max(relay_slot_duration / assigned_core_num, BLOCK_PRODUCTION_MINIMUM_INTERVAL_MS);
		tracing::debug!(
			target: LOG_TARGET,
			?block_production_interval,
			"Expected to produce for {assigned_core_num} cores but only have {para_slots_per_relay_block} slots. Attempting to produce multiple blocks per slot."
		);
	}

	let (duration, timestamp) =
		time_until_next_attempt(time_now, block_production_interval, time_offset);
	let aura_slot = Slot::from_timestamp(timestamp, para_slot_duration);
	(duration, timestamp, aura_slot)
}

/// Returns current duration since Unix epoch.
fn duration_now() -> Duration {
	use std::time::SystemTime;
	let now = SystemTime::now();
	now.duration_since(SystemTime::UNIX_EPOCH).unwrap_or_else(|e| {
		panic!("Current time {:?} is before Unix epoch. Something is wrong: {:?}", now, e)
	})
}

/// Returns the duration until the next block production should be attempted.
/// Returns:
/// - Duration: The duration until the next attempt.
/// - Timestamp: The time at which the attempt will take place.
fn time_until_next_attempt(
	now: Duration,
	block_production_interval: Duration,
	offset: Duration,
) -> (Duration, Timestamp) {
	let now = now.as_millis().saturating_sub(offset.as_millis());

	let next_slot_time = ((now + block_production_interval.as_millis()) /
		block_production_interval.as_millis()) *
		block_production_interval.as_millis();
	let remaining_millis = next_slot_time - now;
	(Duration::from_millis(remaining_millis as u64), Timestamp::from(next_slot_time as u64))
}

impl<Block, Client, P> SlotTimer<Block, Client, P>
where
	Block: BlockT,
	Client: ProvideRuntimeApi<Block> + Send + Sync + 'static + UsageProvider<Block>,
	Client::Api: AuraApi<Block, P::Public>,
	P: Pair,
	P::Public: AppPublic + Member + Codec,
	P::Signature: TryFrom<Vec<u8>> + Member + Codec,
{
	/// Create a new slot timer.
	pub fn new_with_offset(
		client: Arc<Client>,
		time_offset: Duration,
		relay_slot_duration: Duration,
	) -> Self {
		Self {
			client,
			time_offset,
			last_reported_core_num: None,
			relay_slot_duration,
			_marker: Default::default(),
		}
	}

	/// Inform the slot timer about the last seen number of cores.
	pub fn update_scheduling(&mut self, num_cores_next_block: u32) {
		self.last_reported_core_num = Some(num_cores_next_block);
	}

	/// Returns a future that resolves when the next block production should be attempted.
	pub async fn wait_until_next_slot(&self) -> Option<SlotInfo> {
		let Ok(slot_duration) = crate::slot_duration(&*self.client) else {
			tracing::error!(target: LOG_TARGET, "Failed to fetch slot duration from runtime.");
			return None
		};

		let (time_until_next_attempt, timestamp, aura_slot) = compute_next_wake_up_time(
			slot_duration,
			self.relay_slot_duration,
			self.last_reported_core_num,
			duration_now(),
			self.time_offset,
		);

		tokio::time::sleep(time_until_next_attempt).await;

		tracing::debug!(
			target: LOG_TARGET,
			?slot_duration,
			?timestamp,
			?aura_slot,
			"New block production opportunity."
		);
		Some(SlotInfo { slot: aura_slot, timestamp })
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use rstest::rstest;
	use sc_consensus_aura::SlotDuration;
	const RELAY_CHAIN_SLOT_DURATION: u64 = 6000;

	#[rstest]
	// Test that different now timestamps have correct impact
	//                    ||||
	#[case(6000, Some(1), 1000, 0, 5000, 6000, 1)]
	#[case(6000, Some(1), 0, 0, 6000, 6000, 1)]
	#[case(6000, Some(1), 6000, 0, 6000, 12000, 2)]
	#[case(6000, Some(0), 6000, 0, 6000, 12000, 2)]
	// Test that `None` core defaults to 1
	//           ||||
	#[case(6000, None, 1000, 0, 5000, 6000, 1)]
	#[case(6000, None, 0, 0, 6000, 6000, 1)]
	#[case(6000, None, 6000, 0, 6000, 12000, 2)]
	// Test that offset affects the current time correctly
	//                          ||||
	#[case(6000, Some(1), 1000, 1000, 6000, 6000, 1)]
	#[case(6000, Some(1), 12000, 2000, 2000, 12000, 2)]
	#[case(6000, Some(1), 12000, 6000, 6000, 12000, 2)]
	#[case(6000, Some(1), 12000, 7000, 1000, 6000, 1)]
	// Test that number of cores affects the block production interval
	//           |||||||
	#[case(6000, Some(3), 12000, 0, 2000, 14000, 2)]
	#[case(6000, Some(2), 12000, 0, 3000, 15000, 2)]
	#[case(6000, Some(3), 11999, 0, 1, 12000, 2)]
	// High core count
	//           ||||||||
	#[case(6000, Some(12), 0, 0, 500, 500, 0)]
	/// Test that the minimum block interval is respected
	/// at high core counts.
	///          |||||||||
	#[case(6000, Some(100), 0, 0, 500, 500, 0)]
	// Test that slot_duration works correctly
	//     ||||
	#[case(2000, Some(1), 1000, 0, 1000, 2000, 1)]
	#[case(2000, Some(1), 3000, 0, 1000, 4000, 2)]
	#[case(2000, Some(1), 10000, 0, 2000, 12000, 6)]
	#[case(2000, Some(2), 1000, 0, 1000, 2000, 1)]
	// Cores are ignored if relay_slot_duration != para_slot_duration
	//           |||||||
	#[case(2000, Some(3), 3000, 0, 1000, 4000, 2)]
	// For long slot durations, we should still check
	// every relay chain block for the slot.
	//     |||||
	#[case(12000, None, 0, 0, 6000, 6000, 0)]
	#[case(12000, None, 6100, 0, 5900, 12000, 1)]
	#[case(12000, None, 6000, 2000, 2000, 6000, 0)]
	#[case(12000, Some(2), 6000, 0, 3000, 9000, 0)]
	#[case(12000, Some(3), 6000, 0, 2000, 8000, 0)]
	#[case(12000, Some(3), 8100, 0, 1900, 10000, 0)]
	fn test_get_next_slot(
		#[case] para_slot_millis: u64,
		#[case] core_count: Option<u32>,
		#[case] time_now: u64,
		#[case] offset_millis: u64,
		#[case] expected_wait_duration: u128,
		#[case] expected_timestamp: u64,
		#[case] expected_slot: u64,
	) {
		let para_slot_duration = SlotDuration::from_millis(para_slot_millis); // 6 second slots
		let relay_slot_duration = Duration::from_millis(RELAY_CHAIN_SLOT_DURATION);
		let time_now = Duration::from_millis(time_now); // 1 second passed
		let offset = Duration::from_millis(offset_millis);
		let expected_slot = Slot::from(expected_slot);

		let (wait_duration, timestamp, aura_slot) = compute_next_wake_up_time(
			para_slot_duration,
			relay_slot_duration,
			core_count,
			time_now,
			offset,
		);

		assert_eq!(wait_duration.as_millis(), expected_wait_duration, "Wait time mismatch."); // Should wait 5 seconds
		assert_eq!(timestamp.as_millis(), expected_timestamp, "Timestamp mismatch.");
		assert_eq!(aura_slot, expected_slot, "AURA slot mismatch.");
	}
}