pallet_staking_reward_curve/
log.rs1macro_rules! pow2 {
20 ($n:expr) => {
21 1_u32 << $n
22 };
23}
24
25fn taylor_term(k: u32, y_num: u128, y_den: u128) -> u32 {
27 let _2_div_ln_2: u128 = 2_885_390u128;
28
29 if k == 0 {
30 (_2_div_ln_2 * (y_num).pow(1) / (y_den).pow(1)).try_into().unwrap()
31 } else {
32 let mut res = _2_div_ln_2 * (y_num).pow(3) / (y_den).pow(3);
33 for _ in 1..k {
34 res = res * (y_num).pow(2) / (y_den).pow(2);
35 }
36 res /= 2 * k as u128 + 1;
37
38 res.try_into().unwrap()
39 }
40}
41
42pub fn log2(p: u32, q: u32) -> u32 {
50 assert!(p >= q); assert!(p <= u32::MAX / 2);
52
53 assert!(p <= 1_000_000);
55 assert!(q <= 1_000_000);
56
57 if p == q {
59 return 0
60 }
61
62 let mut n = 0u32;
64 while (p < pow2!(n) * q) || (p >= pow2!(n + 1) * q) {
65 n += 1;
66 assert!(n < 32); }
68 assert!(p < pow2!(n + 1) * q);
69
70 let y_num: u32 = p - pow2!(n) * q;
71 let y_den: u32 = p + pow2!(n) * q;
72
73 let mut res = n * 1_000_000u32;
75 let mut k = 0;
76 loop {
77 let term = taylor_term(k, y_num.into(), y_den.into());
78 if term == 0 {
79 break
80 }
81
82 res += term;
83 k += 1;
84 }
85
86 res
87}
88
89#[test]
90fn test_log() {
91 let div = 1_000;
92 for p in 0..=div {
93 for q in 1..=p {
94 let p: u32 = (1_000_000 as u64 * p as u64 / div as u64).try_into().unwrap();
95 let q: u32 = (1_000_000 as u64 * q as u64 / div as u64).try_into().unwrap();
96
97 let res = -(log2(p, q) as i64);
98 let expected = ((q as f64 / p as f64).log(2.0) * 1_000_000 as f64).round() as i64;
99 assert!((res - expected).abs() <= 6);
100 }
101 }
102}
103
104#[test]
105#[should_panic]
106fn test_log_p_must_be_greater_than_q() {
107 let p: u32 = 1_000;
108 let q: u32 = 1_001;
109 let _ = log2(p, q);
110}
111
112#[test]
113#[should_panic]
114fn test_log_p_upper_bound() {
115 let p: u32 = 1_000_001;
116 let q: u32 = 1_000_000;
117 let _ = log2(p, q);
118}
119
120#[test]
121#[should_panic]
122fn test_log_q_limit() {
123 let p: u32 = 1_000_000;
124 let q: u32 = 0;
125 let _ = log2(p, q);
126}
127
128#[test]
129fn test_log_of_one_boundary() {
130 let p: u32 = 1_000_000;
131 let q: u32 = 1_000_000;
132 assert_eq!(log2(p, q), 0);
133}
134
135#[test]
136fn test_log_of_largest_input() {
137 let p: u32 = 1_000_000;
138 let q: u32 = 1;
139 let expected = 19_931_568;
140 let tolerance = 100;
141 assert!((log2(p, q) as i32 - expected as i32).abs() < tolerance);
142}