referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Tools for analyzing the benchmark results.

use crate::BenchmarkResult;
use std::collections::BTreeMap;

pub struct Analysis {
	pub base: u128,
	pub slopes: Vec<u128>,
	pub names: Vec<String>,
	pub value_dists: Option<Vec<(Vec<u32>, u128, u128)>>,
	pub errors: Option<Vec<u128>>,
	pub minimum: u128,
	selector: BenchmarkSelector,
}

#[derive(Clone, Copy)]
pub enum BenchmarkSelector {
	ExtrinsicTime,
	StorageRootTime,
	Reads,
	Writes,
	ProofSize,
}

/// Multiplies the value by 1000 and converts it into an u128.
fn mul_1000_into_u128(value: f64) -> u128 {
	// This is slightly more precise than the alternative of `(value * 1000.0) as u128`.
	(value as u128)
		.saturating_mul(1000)
		.saturating_add((value.fract() * 1000.0) as u128)
}

impl BenchmarkSelector {
	fn scale_and_cast_weight(self, value: f64, round_up: bool) -> u128 {
		if let BenchmarkSelector::ExtrinsicTime = self {
			// We add a very slight bias here to counteract the numerical imprecision of the linear
			// regression where due to rounding issues it can emit a number like `2999999.999999998`
			// which we most certainly always want to round up instead of truncating.
			mul_1000_into_u128(value + 0.000_000_005)
		} else {
			if round_up {
				(value + 0.5) as u128
			} else {
				value as u128
			}
		}
	}

	fn scale_weight(self, value: u128) -> u128 {
		if let BenchmarkSelector::ExtrinsicTime = self {
			value.saturating_mul(1000)
		} else {
			value
		}
	}

	fn nanos_from_weight(self, value: u128) -> u128 {
		if let BenchmarkSelector::ExtrinsicTime = self {
			value / 1000
		} else {
			value
		}
	}

	fn get_value(self, result: &BenchmarkResult) -> u128 {
		match self {
			BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
			BenchmarkSelector::StorageRootTime => result.storage_root_time,
			BenchmarkSelector::Reads => result.reads.into(),
			BenchmarkSelector::Writes => result.writes.into(),
			BenchmarkSelector::ProofSize => result.proof_size.into(),
		}
	}

	fn get_minimum(self, results: &[BenchmarkResult]) -> u128 {
		results
			.iter()
			.map(|result| self.get_value(result))
			.min()
			.expect("results cannot be empty")
	}
}

#[derive(Debug)]
pub enum AnalysisChoice {
	/// Use minimum squares regression for analyzing the benchmarking results.
	MinSquares,
	/// Use median slopes for analyzing the benchmarking results.
	MedianSlopes,
	/// Use the maximum values among all other analysis functions for the benchmarking results.
	Max,
}

impl Default for AnalysisChoice {
	fn default() -> Self {
		AnalysisChoice::MinSquares
	}
}

impl TryFrom<Option<String>> for AnalysisChoice {
	type Error = &'static str;

	fn try_from(s: Option<String>) -> Result<Self, Self::Error> {
		match s {
			None => Ok(AnalysisChoice::default()),
			Some(i) => match &i[..] {
				"min-squares" | "min_squares" => Ok(AnalysisChoice::MinSquares),
				"median-slopes" | "median_slopes" => Ok(AnalysisChoice::MedianSlopes),
				"max" => Ok(AnalysisChoice::Max),
				_ => Err("invalid analysis string"),
			},
		}
	}
}

fn raw_linear_regression(
	xs: &[f64],
	ys: &[f64],
	x_vars: usize,
	with_intercept: bool,
) -> Option<(f64, Vec<f64>, Vec<f64>)> {
	let mut data: Vec<f64> = Vec::new();

	// Here we build a raw matrix of linear equations for the `linregress` crate to solve for us
	// and build a linear regression model around it.
	//
	// Each row of the matrix contains as the first column the actual value which we want
	// the model to predict for us (the `y`), and the rest of the columns contain the input
	// parameters on which the model will base its predictions on (the `xs`).
	//
	// In machine learning terms this is essentially the training data for the model.
	//
	// As a special case the very first input parameter represents the constant factor
	// of the linear equation: the so called "intercept value". Since it's supposed to
	// be constant we can just put a dummy input parameter of either a `1` (in case we want it)
	// or a `0` (in case we do not).
	for (&y, xs) in ys.iter().zip(xs.chunks_exact(x_vars)) {
		data.push(y);
		if with_intercept {
			data.push(1.0);
		} else {
			data.push(0.0);
		}
		data.extend(xs);
	}
	let model = linregress::fit_low_level_regression_model(&data, ys.len(), x_vars + 2).ok()?;
	Some((model.parameters()[0], model.parameters()[1..].to_vec(), model.se().to_vec()))
}

fn linear_regression(
	xs: Vec<f64>,
	mut ys: Vec<f64>,
	x_vars: usize,
) -> Option<(f64, Vec<f64>, Vec<f64>)> {
	let (intercept, params, errors) = raw_linear_regression(&xs, &ys, x_vars, true)?;
	if intercept >= -0.0001 {
		// The intercept is positive, or is effectively zero.
		return Some((intercept, params, errors[1..].to_vec()))
	}

	// The intercept is negative.
	// The weights must be always positive, so we can't have that.

	let mut min = ys[0];
	for &value in &ys {
		if value < min {
			min = value;
		}
	}

	for value in &mut ys {
		*value -= min;
	}

	let (intercept, params, errors) = raw_linear_regression(&xs, &ys, x_vars, false)?;
	assert!(intercept.abs() <= 0.0001);
	Some((min, params, errors[1..].to_vec()))
}

impl Analysis {
	// Useful for when there are no components, and we just need an median value of the benchmark
	// results. Note: We choose the median value because it is more robust to outliers.
	fn median_value(r: &Vec<BenchmarkResult>, selector: BenchmarkSelector) -> Option<Self> {
		if r.is_empty() {
			return None
		}

		let mut values: Vec<u128> = r
			.iter()
			.map(|result| match selector {
				BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
				BenchmarkSelector::StorageRootTime => result.storage_root_time,
				BenchmarkSelector::Reads => result.reads.into(),
				BenchmarkSelector::Writes => result.writes.into(),
				BenchmarkSelector::ProofSize => result.proof_size.into(),
			})
			.collect();

		values.sort();
		let mid = values.len() / 2;

		Some(Self {
			base: selector.scale_weight(values[mid]),
			slopes: Vec::new(),
			names: Vec::new(),
			value_dists: None,
			errors: None,
			minimum: selector.get_minimum(&r),
			selector,
		})
	}

	pub fn median_slopes(r: &Vec<BenchmarkResult>, selector: BenchmarkSelector) -> Option<Self> {
		if r[0].components.is_empty() {
			return Self::median_value(r, selector)
		}

		let results = r[0]
			.components
			.iter()
			.enumerate()
			.map(|(i, &(param, _))| {
				let mut counted = BTreeMap::<Vec<u32>, usize>::new();
				for result in r.iter() {
					let mut p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
					p[i] = 0;
					*counted.entry(p).or_default() += 1;
				}
				let others: Vec<u32> =
					counted.iter().max_by_key(|i| i.1).expect("r is not empty; qed").0.clone();
				let values = r
					.iter()
					.filter(|v| {
						v.components
							.iter()
							.map(|x| x.1)
							.zip(others.iter())
							.enumerate()
							.all(|(j, (v1, v2))| j == i || v1 == *v2)
					})
					.map(|result| {
						// Extract the data we are interested in analyzing
						let data = match selector {
							BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
							BenchmarkSelector::StorageRootTime => result.storage_root_time,
							BenchmarkSelector::Reads => result.reads.into(),
							BenchmarkSelector::Writes => result.writes.into(),
							BenchmarkSelector::ProofSize => result.proof_size.into(),
						};
						(result.components[i].1, data)
					})
					.collect::<Vec<_>>();
				(format!("{:?}", param), i, others, values)
			})
			.collect::<Vec<_>>();

		let models = results
			.iter()
			.map(|(_, _, _, ref values)| {
				let mut slopes = vec![];
				for (i, &(x1, y1)) in values.iter().enumerate() {
					for &(x2, y2) in values.iter().skip(i + 1) {
						if x1 != x2 {
							slopes.push((y1 as f64 - y2 as f64) / (x1 as f64 - x2 as f64));
						}
					}
				}
				slopes.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
				let slope = slopes[slopes.len() / 2];

				let mut offsets = vec![];
				for &(x, y) in values.iter() {
					offsets.push(y as f64 - slope * x as f64);
				}
				offsets.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
				let offset = offsets[offsets.len() / 2];

				(offset, slope)
			})
			.collect::<Vec<_>>();

		let models = models
			.iter()
			.zip(results.iter())
			.map(|((offset, slope), (_, i, others, _))| {
				let over = others
					.iter()
					.enumerate()
					.filter(|(j, _)| j != i)
					.map(|(j, v)| models[j].1 * *v as f64)
					.fold(0f64, |acc, i| acc + i);
				(*offset - over, *slope)
			})
			.collect::<Vec<_>>();

		let base = selector.scale_and_cast_weight(models[0].0.max(0f64), false);
		let slopes = models
			.iter()
			.map(|x| selector.scale_and_cast_weight(x.1.max(0f64), false))
			.collect::<Vec<_>>();

		Some(Self {
			base,
			slopes,
			names: results.into_iter().map(|x| x.0).collect::<Vec<_>>(),
			value_dists: None,
			errors: None,
			minimum: selector.get_minimum(&r),
			selector,
		})
	}

	pub fn min_squares_iqr(r: &Vec<BenchmarkResult>, selector: BenchmarkSelector) -> Option<Self> {
		if r[0].components.is_empty() || r.len() <= 2 {
			return Self::median_value(r, selector)
		}

		let mut results = BTreeMap::<Vec<u32>, Vec<u128>>::new();
		for result in r.iter() {
			let p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
			results.entry(p).or_default().push(match selector {
				BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
				BenchmarkSelector::StorageRootTime => result.storage_root_time,
				BenchmarkSelector::Reads => result.reads.into(),
				BenchmarkSelector::Writes => result.writes.into(),
				BenchmarkSelector::ProofSize => result.proof_size.into(),
			})
		}

		for (_, rs) in results.iter_mut() {
			rs.sort();
			let ql = rs.len() / 4;
			*rs = rs[ql..rs.len() - ql].to_vec();
		}

		let names = r[0].components.iter().map(|x| format!("{:?}", x.0)).collect::<Vec<_>>();
		let value_dists = results
			.iter()
			.map(|(p, vs)| {
				// Avoid divide by zero
				if vs.is_empty() {
					return (p.clone(), 0, 0)
				}
				let total = vs.iter().fold(0u128, |acc, v| acc + *v);
				let mean = total / vs.len() as u128;
				let sum_sq_diff = vs.iter().fold(0u128, |acc, v| {
					let d = mean.max(*v) - mean.min(*v);
					acc + d * d
				});
				let stddev = (sum_sq_diff as f64 / vs.len() as f64).sqrt() as u128;
				(p.clone(), mean, stddev)
			})
			.collect::<Vec<_>>();

		let mut ys: Vec<f64> = Vec::new();
		let mut xs: Vec<f64> = Vec::new();
		for result in results {
			let x: Vec<f64> = result.0.iter().map(|value| *value as f64).collect();
			for y in result.1 {
				xs.extend(x.iter().copied());
				ys.push(y as f64);
			}
		}

		let (intercept, slopes, errors) = linear_regression(xs, ys, r[0].components.len())?;

		Some(Self {
			base: selector.scale_and_cast_weight(intercept, true),
			slopes: slopes
				.into_iter()
				.map(|value| selector.scale_and_cast_weight(value, true))
				.collect(),
			names,
			value_dists: Some(value_dists),
			errors: Some(
				errors
					.into_iter()
					.map(|value| selector.scale_and_cast_weight(value, false))
					.collect(),
			),
			minimum: selector.get_minimum(&r),
			selector,
		})
	}

	pub fn max(r: &Vec<BenchmarkResult>, selector: BenchmarkSelector) -> Option<Self> {
		let median_slopes = Self::median_slopes(r, selector);
		let min_squares = Self::min_squares_iqr(r, selector);

		if median_slopes.is_none() || min_squares.is_none() {
			return None
		}

		let median_slopes = median_slopes.unwrap();
		let min_squares = min_squares.unwrap();

		let base = median_slopes.base.max(min_squares.base);
		let slopes = median_slopes
			.slopes
			.into_iter()
			.zip(min_squares.slopes.into_iter())
			.map(|(a, b): (u128, u128)| a.max(b))
			.collect::<Vec<u128>>();
		// components should always be in the same order
		median_slopes
			.names
			.iter()
			.zip(min_squares.names.iter())
			.for_each(|(a, b)| assert!(a == b, "benchmark results not in the same order"));
		let names = median_slopes.names;
		let value_dists = min_squares.value_dists;
		let errors = min_squares.errors;
		let minimum = selector.get_minimum(&r);

		Some(Self { base, slopes, names, value_dists, errors, selector, minimum })
	}
}

fn ms(mut nanos: u128) -> String {
	let mut x = 100_000u128;
	while x > 1 {
		if nanos > x * 1_000 {
			nanos = nanos / x * x;
			break
		}
		x /= 10;
	}
	format!("{}", nanos as f64 / 1_000f64)
}

impl std::fmt::Display for Analysis {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		if let Some(ref value_dists) = self.value_dists {
			writeln!(f, "\nData points distribution:")?;
			writeln!(
				f,
				"{}   mean µs  sigma µs       %",
				self.names.iter().map(|p| format!("{:>5}", p)).collect::<Vec<_>>().join(" ")
			)?;
			for (param_values, mean, sigma) in value_dists.iter() {
				if *mean == 0 {
					writeln!(
						f,
						"{}  {:>8}  {:>8}  {:>3}.{}%",
						param_values
							.iter()
							.map(|v| format!("{:>5}", v))
							.collect::<Vec<_>>()
							.join(" "),
						ms(*mean),
						ms(*sigma),
						"?",
						"?"
					)?;
				} else {
					writeln!(
						f,
						"{}  {:>8}  {:>8}  {:>3}.{}%",
						param_values
							.iter()
							.map(|v| format!("{:>5}", v))
							.collect::<Vec<_>>()
							.join(" "),
						ms(*mean),
						ms(*sigma),
						(sigma * 100 / mean),
						(sigma * 1000 / mean % 10)
					)?;
				}
			}
		}

		if let Some(ref errors) = self.errors {
			writeln!(f, "\nQuality and confidence:")?;
			writeln!(f, "param     error")?;
			for (p, se) in self.names.iter().zip(errors.iter()) {
				writeln!(f, "{}      {:>8}", p, ms(self.selector.nanos_from_weight(*se)))?;
			}
		}

		writeln!(f, "\nModel:")?;
		writeln!(f, "Time ~= {:>8}", ms(self.selector.nanos_from_weight(self.base)))?;
		for (&t, n) in self.slopes.iter().zip(self.names.iter()) {
			writeln!(f, "    + {} {:>8}", n, ms(self.selector.nanos_from_weight(t)))?;
		}
		writeln!(f, "              µs")
	}
}

impl std::fmt::Debug for Analysis {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		write!(f, "{}", self.base)?;
		for (&m, n) in self.slopes.iter().zip(self.names.iter()) {
			write!(f, " + ({} * {})", m, n)?;
		}
		write!(f, "")
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::BenchmarkParameter;

	fn benchmark_result(
		components: Vec<(BenchmarkParameter, u32)>,
		extrinsic_time: u128,
		storage_root_time: u128,
		reads: u32,
		writes: u32,
	) -> BenchmarkResult {
		BenchmarkResult {
			components,
			extrinsic_time,
			storage_root_time,
			reads,
			repeat_reads: 0,
			writes,
			repeat_writes: 0,
			proof_size: 0,
			keys: vec![],
		}
	}

	#[test]
	fn test_linear_regression() {
		let ys = vec![
			3797981.0,
			37857779.0,
			70569402.0,
			104004114.0,
			137233924.0,
			169826237.0,
			203521133.0,
			237552333.0,
			271082065.0,
			305554637.0,
			335218347.0,
			371759065.0,
			405086197.0,
			438353555.0,
			472891417.0,
			505339532.0,
			527784778.0,
			562590596.0,
			635291991.0,
			673027090.0,
			708119408.0,
		];
		let xs = vec![
			0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
			16.0, 17.0, 18.0, 19.0, 20.0,
		];

		let (intercept, params, errors) = raw_linear_regression(&xs, &ys, 1, true).unwrap();
		assert_eq!(intercept as i64, -2712997);
		assert_eq!(params.len(), 1);
		assert_eq!(params[0] as i64, 34444926);
		assert_eq!(errors.len(), 2);
		assert_eq!(errors[0] as i64, 4805766);
		assert_eq!(errors[1] as i64, 411084);

		let (intercept, params, errors) = linear_regression(xs, ys, 1).unwrap();
		assert_eq!(intercept as i64, 3797981);
		assert_eq!(params.len(), 1);
		assert_eq!(params[0] as i64, 33968513);
		assert_eq!(errors.len(), 1);
		assert_eq!(errors[0] as i64, 217331);
	}

	#[test]
	fn analysis_median_slopes_should_work() {
		let data = vec![
			benchmark_result(
				vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)],
				11_500_000,
				0,
				3,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)],
				12_500_000,
				0,
				4,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)],
				13_500_000,
				0,
				5,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)],
				14_500_000,
				0,
				6,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)],
				13_100_000,
				0,
				5,
				2,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)],
				13_300_000,
				0,
				5,
				6,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)],
				13_700_000,
				0,
				5,
				14,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)],
				14_000_000,
				0,
				5,
				20,
			),
		];

		let extrinsic_time =
			Analysis::median_slopes(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
		assert_eq!(extrinsic_time.base, 10_000_000_000);
		assert_eq!(extrinsic_time.slopes, vec![1_000_000_000, 100_000_000]);

		let reads = Analysis::median_slopes(&data, BenchmarkSelector::Reads).unwrap();
		assert_eq!(reads.base, 2);
		assert_eq!(reads.slopes, vec![1, 0]);

		let writes = Analysis::median_slopes(&data, BenchmarkSelector::Writes).unwrap();
		assert_eq!(writes.base, 0);
		assert_eq!(writes.slopes, vec![0, 2]);
	}

	#[test]
	fn analysis_median_min_squares_should_work() {
		let data = vec![
			benchmark_result(
				vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)],
				11_500_000,
				0,
				3,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)],
				12_500_000,
				0,
				4,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)],
				13_500_000,
				0,
				5,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)],
				14_500_000,
				0,
				6,
				10,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)],
				13_100_000,
				0,
				5,
				2,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)],
				13_300_000,
				0,
				5,
				6,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)],
				13_700_000,
				0,
				5,
				14,
			),
			benchmark_result(
				vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)],
				14_000_000,
				0,
				5,
				20,
			),
		];

		let extrinsic_time =
			Analysis::min_squares_iqr(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
		assert_eq!(extrinsic_time.base, 10_000_000_000);
		assert_eq!(extrinsic_time.slopes, vec![1000000000, 100000000]);

		let reads = Analysis::min_squares_iqr(&data, BenchmarkSelector::Reads).unwrap();
		assert_eq!(reads.base, 2);
		assert_eq!(reads.slopes, vec![1, 0]);

		let writes = Analysis::min_squares_iqr(&data, BenchmarkSelector::Writes).unwrap();
		assert_eq!(writes.base, 0);
		assert_eq!(writes.slopes, vec![0, 2]);
	}

	#[test]
	fn analysis_min_squares_iqr_uses_multiple_samples_for_same_parameters() {
		let data = vec![
			benchmark_result(vec![(BenchmarkParameter::n, 0)], 2_000_000, 0, 0, 0),
			benchmark_result(vec![(BenchmarkParameter::n, 0)], 4_000_000, 0, 0, 0),
			benchmark_result(vec![(BenchmarkParameter::n, 1)], 4_000_000, 0, 0, 0),
			benchmark_result(vec![(BenchmarkParameter::n, 1)], 8_000_000, 0, 0, 0),
		];

		let extrinsic_time =
			Analysis::min_squares_iqr(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
		assert_eq!(extrinsic_time.base, 3_000_000_000);
		assert_eq!(extrinsic_time.slopes, vec![3_000_000_000]);
	}

	#[test]
	fn intercept_of_a_little_under_zero_is_rounded_up_to_zero() {
		// Analytically this should result in an intercept of 0, but
		// due to numerical imprecision this will generate an intercept
		// equal to roughly -0.0000000000000004440892098500626
		let data = vec![
			benchmark_result(vec![(BenchmarkParameter::n, 1)], 2, 0, 0, 0),
			benchmark_result(vec![(BenchmarkParameter::n, 2)], 4, 0, 0, 0),
			benchmark_result(vec![(BenchmarkParameter::n, 3)], 6, 0, 0, 0),
		];

		let extrinsic_time =
			Analysis::min_squares_iqr(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
		assert_eq!(extrinsic_time.base, 0);
		assert_eq!(extrinsic_time.slopes, vec![2000]);
	}
}