1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Tracking/limiting global allocator. Calculates the peak allocation between two checkpoints for
//! the whole process. Accepts an optional limit and a failure handler which is called if the limit
//! is overflown.
use core::{
alloc::{GlobalAlloc, Layout},
ops::{Deref, DerefMut},
};
use std::{
cell::UnsafeCell,
ptr::null_mut,
sync::atomic::{AtomicBool, Ordering},
};
struct Spinlock<T> {
lock: AtomicBool,
data: UnsafeCell<T>,
}
struct SpinlockGuard<'a, T: 'a> {
lock: &'a Spinlock<T>,
}
// SAFETY: We require that the data inside of the `SpinLock` is `Send`, so it can be sent
// and accessed by any thread as long as it's accessed by only one thread at a time.
// The `SpinLock` provides an exclusive lock over it, so it guarantees that multiple
// threads cannot access it at the same time, hence it implements `Sync` (that is, it can be
// accessed concurrently from multiple threads, even though the `T` itself might not
// necessarily be `Sync` too).
unsafe impl<T: Send> Sync for Spinlock<T> {}
impl<T> Spinlock<T> {
pub const fn new(t: T) -> Spinlock<T> {
Spinlock { lock: AtomicBool::new(false), data: UnsafeCell::new(t) }
}
#[inline]
pub fn lock(&self) -> SpinlockGuard<T> {
loop {
// Try to acquire the lock.
if self
.lock
.compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
return SpinlockGuard { lock: self }
}
// We failed to acquire the lock; wait until it's unlocked.
//
// In theory this should result in less coherency traffic as unlike `compare_exchange`
// it is a read-only operation, so multiple cores can execute it simultaneously
// without taking an exclusive lock over the cache line.
while self.lock.load(Ordering::Relaxed) {
std::hint::spin_loop();
}
}
}
// SAFETY: It should be only called from the guard's destructor. Calling it explicitly while
// the guard is alive is undefined behavior, as it breaks the security contract of `Deref` and
// `DerefMut`, which implies that lock is held at the moment of dereferencing.
#[inline]
unsafe fn unlock(&self) {
self.lock.store(false, Ordering::Release);
}
}
impl<T> Deref for SpinlockGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
// SAFETY: It is safe to dereference a guard to the `UnsafeCell` underlying data as the
// presence of the guard means the data is already locked.
unsafe { &*self.lock.data.get() }
}
}
impl<T> DerefMut for SpinlockGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
// SAFETY: Same as for `Deref::deref`.
unsafe { &mut *self.lock.data.get() }
}
}
impl<T> Drop for SpinlockGuard<'_, T> {
fn drop(&mut self) {
// SAFETY: Calling `unlock` is only safe when it's guaranteed no guard outlives the
// unlocking point; here, the guard is dropped, so it is safe.
unsafe { self.lock.unlock() }
}
}
struct TrackingAllocatorData {
current: isize,
peak: isize,
limit: isize,
failure_handler: Option<Box<dyn Fn() + Send>>,
}
impl TrackingAllocatorData {
fn start_tracking(
mut guard: SpinlockGuard<Self>,
limit: isize,
failure_handler: Option<Box<dyn Fn() + Send>>,
) {
guard.current = 0;
guard.peak = 0;
guard.limit = limit;
// Cannot drop it yet, as it would trigger a deallocation
let old_handler = guard.failure_handler.take();
guard.failure_handler = failure_handler;
drop(guard);
drop(old_handler);
}
fn end_tracking(mut guard: SpinlockGuard<Self>) -> isize {
let peak = guard.peak;
guard.limit = 0;
// Cannot drop it yet, as it would trigger a deallocation
let old_handler = guard.failure_handler.take();
drop(guard);
drop(old_handler);
peak
}
#[inline]
fn track_and_check_limits(
mut guard: SpinlockGuard<Self>,
alloc: isize,
) -> Option<SpinlockGuard<Self>> {
guard.current += alloc;
if guard.current > guard.peak {
guard.peak = guard.current;
}
if guard.limit == 0 || guard.peak <= guard.limit {
None
} else {
Some(guard)
}
}
}
static ALLOCATOR_DATA: Spinlock<TrackingAllocatorData> =
Spinlock::new(TrackingAllocatorData { current: 0, peak: 0, limit: 0, failure_handler: None });
pub struct TrackingAllocator<A: GlobalAlloc>(pub A);
impl<A: GlobalAlloc> TrackingAllocator<A> {
/// Start tracking memory allocations and deallocations.
///
/// # Safety
///
/// Failure handler is called with the allocator being in the locked state. Thus, no
/// allocations or deallocations are allowed inside the failure handler; otherwise, a
/// deadlock will occur.
pub unsafe fn start_tracking(
&self,
limit: Option<isize>,
failure_handler: Option<Box<dyn Fn() + Send>>,
) {
TrackingAllocatorData::start_tracking(
ALLOCATOR_DATA.lock(),
limit.unwrap_or(0),
failure_handler,
);
}
/// End tracking and return the peak allocation value in bytes (as `isize`). Peak allocation
/// value is not guaranteed to be neither non-zero nor positive.
pub fn end_tracking(&self) -> isize {
TrackingAllocatorData::end_tracking(ALLOCATOR_DATA.lock())
}
}
#[cold]
#[inline(never)]
unsafe fn fail_allocation(guard: SpinlockGuard<TrackingAllocatorData>) -> *mut u8 {
if let Some(failure_handler) = &guard.failure_handler {
failure_handler()
}
null_mut()
}
unsafe impl<A: GlobalAlloc> GlobalAlloc for TrackingAllocator<A> {
// SAFETY:
// * The wrapped methods are as safe as the underlying allocator implementation is
#[inline]
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let guard = ALLOCATOR_DATA.lock();
if let Some(guard) =
TrackingAllocatorData::track_and_check_limits(guard, layout.size() as isize)
{
fail_allocation(guard)
} else {
self.0.alloc(layout)
}
}
#[inline]
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
let guard = ALLOCATOR_DATA.lock();
if let Some(guard) =
TrackingAllocatorData::track_and_check_limits(guard, layout.size() as isize)
{
fail_allocation(guard)
} else {
self.0.alloc_zeroed(layout)
}
}
#[inline]
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
let guard = ALLOCATOR_DATA.lock();
TrackingAllocatorData::track_and_check_limits(guard, -(layout.size() as isize));
self.0.dealloc(ptr, layout)
}
#[inline]
unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
let guard = ALLOCATOR_DATA.lock();
if let Some(guard) = TrackingAllocatorData::track_and_check_limits(
guard,
(new_size as isize) - (layout.size() as isize),
) {
fail_allocation(guard)
} else {
self.0.realloc(ptr, layout, new_size)
}
}
}