1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Utility for managing parachain fragments not referenced by the relay-chain.
//!
//! # Overview
//!
//! The main type exposed by this module is the [`FragmentChain`].
//!
//! Each fragment chain is associated with a particular relay-parent (an active leaf) and has a
//! [`Scope`], which contains the allowed relay parents (up to `allowed_ancestry_len`), the pending
//! availability candidates and base constraints derived from the latest included candidate. Each
//! parachain has a single `FragmentChain` for each active leaf where it's scheduled.
//!
//! A fragment chain consists mainly of the current best backable chain (we'll call this the best
//! chain) and a storage of unconnected potential candidates (we'll call this the unconnected
//! storage).
//!
//! The best chain contains all the candidates pending availability and a subsequent chain
//! of candidates that have reached the backing quorum and are better than any other backable forks
//! according to the fork selection rule (more on this rule later). It has a length of size at most
//! `max_candidate_depth + 1`.
//!
//! The unconnected storage keeps a record of seconded/backable candidates that may be
//! added to the best chain in the future.
//! Once a candidate is seconded, it becomes part of this unconnected storage.
//! Only after it is backed it may be added to the best chain (but not necessarily). It's only
//! added if it builds on the latest candidate in the chain and if there isn't a better backable
//! candidate according to the fork selection rule.
//!
//! An important thing to note is that the candidates present in the unconnected storage may have
//! any/no relationship between them. In other words, they may form N trees and may even form
//! cycles. This is needed so that we may begin validating candidates for which we don't yet know
//! their parent (so we may parallelize the backing process across different groups for elastic
//! scaling) and so that we accept parachain forks.
//!
//! We accept parachain forks only if the fork selection rule allows for it. In other words, if we
//! have a backed candidate, we begin seconding/validating a fork only if it has a lower candidate
//! hash. Once both forks are backed, we discard the one with the higher candidate hash.
//! We assume all validators pick the same fork according to the fork selection rule. If we decided
//! to not accept parachain forks, candidates could end up getting only half of the backing votes or
//! even less (for forks of larger arity). This would affect the validator rewards. Still, we don't
//! guarantee that a fork-producing parachains will be able to fully use elastic scaling.
//!
//! Once a candidate is backed and becomes part of the best chain, we can trim from the
//! unconnected storage candidates which constitute forks on the best chain and no longer have
//! potential.
//!
//! This module also makes use of types provided by the Inclusion Emulator module, such as
//! [`Fragment`] and [`Constraints`]. These perform the actual job of checking for validity of
//! prospective fragments.
//!
//! # Fork choice rule
//!
//! The motivation for the fork choice rule is described in the previous chapter.
//!
//! The current rule is: choose the candidate with the lower candidate hash.
//! The candidate hash is quite random and finding a candidate with a lower hash in order to favour
//! it would essentially mean solving a proof of work problem.
//!
//! # Parachain cycles
//!
//! Parachains can create cycles, because:
//! 1. There's no requirement that head-data is unique for a parachain. Furthermore, a parachain
//! is under no obligation to be acyclic, and this is mostly just because it's totally
//! inefficient to enforce it. Practical use-cases are acyclic, but there is still more than
//! one way to reach the same head-data.
//! 2. and candidates only refer to their parent by its head-data. This whole issue could be
//! resolved by having candidates reference their parent by candidate hash.
//!
//! However, dealing with cycles increases complexity during the backing/inclusion process for no
//! practical reason.
//! These cycles may be accepted by fragment chains while candidates are part of the unconnected
//! storage, but they will definitely not make it to the best chain.
//!
//! On the other hand, enforcing that a parachain will NEVER be acyclic would be very complicated
//! (looping through the entire parachain's history on every new candidate or changing the candidate
//! receipt to reference the parent's candidate hash).
//!
//! Therefore, we don't provide a guarantee that a cycle-producing parachain will work (although in
//! practice they probably will if the cycle length is larger than the number of assigned cores
//! multiplied by two).
//!
//! # Spam protection
//!
//! As long as the supplied number of candidates is bounded, [`FragmentChain`] complexity is
//! bounded. This means that higher-level code needs to be selective about limiting the amount of
//! candidates that are considered.
//!
//! Practically speaking, the collator-protocol will not allow more than `max_candidate_depth + 1`
//! collations to be fetched at a relay parent and statement-distribution will not allow more than
//! `max_candidate_depth + 1` seconded candidates at a relay parent per each validator in the
//! backing group. Considering the `allowed_ancestry_len` configuration value, the number of
//! candidates in a `FragmentChain` (including its unconnected storage) should not exceed:
//!
//! `allowed_ancestry_len * (max_candidate_depth + 1) * backing_group_size`.
//!
//! The code in this module is not designed for speed or efficiency, but conceptual simplicity.
//! Our assumption is that the amount of candidates and parachains we consider will be reasonably
//! bounded and in practice will not exceed a few thousand at any time. This naive implementation
//! will still perform fairly well under these conditions, despite being somewhat wasteful of
//! memory.
//!
//! Still, the expensive candidate data (CandidateCommitments) are wrapped in an `Arc` and shared
//! across fragment chains of the same para on different active leaves.
#[cfg(test)]
mod tests;
use std::{
cmp::{min, Ordering},
collections::{
hash_map::{Entry, HashMap},
BTreeMap, HashSet, VecDeque,
},
sync::Arc,
};
use super::LOG_TARGET;
use polkadot_node_subsystem::messages::Ancestors;
use polkadot_node_subsystem_util::inclusion_emulator::{
self, ConstraintModifications, Constraints, Fragment, HypotheticalOrConcreteCandidate,
ProspectiveCandidate, RelayChainBlockInfo,
};
use polkadot_primitives::{
vstaging::CommittedCandidateReceiptV2 as CommittedCandidateReceipt, BlockNumber,
CandidateCommitments, CandidateHash, Hash, HeadData, PersistedValidationData,
ValidationCodeHash,
};
use thiserror::Error;
/// Fragment chain related errors.
#[derive(Debug, Clone, PartialEq, Error)]
pub(crate) enum Error {
#[error("Candidate already known")]
CandidateAlreadyKnown,
#[error("Candidate's parent head is equal to its output head. Would introduce a cycle.")]
ZeroLengthCycle,
#[error("Candidate would introduce a cycle")]
Cycle,
#[error("Candidate would introduce two paths to the same output state")]
MultiplePaths,
#[error("Attempting to directly introduce a Backed candidate. It should first be introduced as Seconded")]
IntroduceBackedCandidate,
#[error("Relay parent {0:?} of the candidate precedes the relay parent {1:?} of a pending availability candidate")]
RelayParentPrecedesCandidatePendingAvailability(Hash, Hash),
#[error("Candidate would introduce a fork with a pending availability candidate: {0:?}")]
ForkWithCandidatePendingAvailability(CandidateHash),
#[error("Fork selection rule favours another candidate: {0:?}")]
ForkChoiceRule(CandidateHash),
#[error("Could not find parent of the candidate")]
ParentCandidateNotFound,
#[error("Could not compute candidate constraints: {0:?}")]
ComputeConstraints(inclusion_emulator::ModificationError),
#[error("Candidate violates constraints: {0:?}")]
CheckAgainstConstraints(inclusion_emulator::FragmentValidityError),
#[error("Relay parent would move backwards from the latest candidate in the chain")]
RelayParentMovedBackwards,
#[error(transparent)]
CandidateEntry(#[from] CandidateEntryError),
#[error("Relay parent {0:?} not in scope. Earliest relay parent allowed {1:?}")]
RelayParentNotInScope(Hash, Hash),
}
/// The rule for selecting between two backed candidate forks, when adding to the chain.
/// All validators should adhere to this rule, in order to not lose out on rewards in case of
/// forking parachains.
fn fork_selection_rule(hash1: &CandidateHash, hash2: &CandidateHash) -> Ordering {
hash1.cmp(hash2)
}
/// Utility for storing candidates and information about them such as their relay-parents and their
/// backing states. This does not assume any restriction on whether or not the candidates form a
/// chain. Useful for storing all kinds of candidates.
#[derive(Clone, Default)]
pub(crate) struct CandidateStorage {
// Index from head data hash to candidate hashes with that head data as a parent. Useful for
// efficiency when responding to `ProspectiveValidationDataRequest`s or when trying to find a
// new candidate to push to a chain.
by_parent_head: HashMap<Hash, HashSet<CandidateHash>>,
// Index from head data hash to candidate hashes outputting that head data. For
// efficiency when responding to `ProspectiveValidationDataRequest`s.
by_output_head: HashMap<Hash, HashSet<CandidateHash>>,
// Index from candidate hash to fragment node.
by_candidate_hash: HashMap<CandidateHash, CandidateEntry>,
}
impl CandidateStorage {
/// Introduce a new pending availability candidate.
pub fn add_pending_availability_candidate(
&mut self,
candidate_hash: CandidateHash,
candidate: CommittedCandidateReceipt,
persisted_validation_data: PersistedValidationData,
) -> Result<(), Error> {
let entry = CandidateEntry::new(
candidate_hash,
candidate,
persisted_validation_data,
CandidateState::Backed,
)?;
self.add_candidate_entry(entry)
}
/// Return the number of stored candidates.
pub fn len(&self) -> usize {
self.by_candidate_hash.len()
}
/// Introduce a new candidate entry.
fn add_candidate_entry(&mut self, candidate: CandidateEntry) -> Result<(), Error> {
let candidate_hash = candidate.candidate_hash;
if self.by_candidate_hash.contains_key(&candidate_hash) {
return Err(Error::CandidateAlreadyKnown)
}
self.by_parent_head
.entry(candidate.parent_head_data_hash)
.or_default()
.insert(candidate_hash);
self.by_output_head
.entry(candidate.output_head_data_hash)
.or_default()
.insert(candidate_hash);
self.by_candidate_hash.insert(candidate_hash, candidate);
Ok(())
}
/// Remove a candidate from the store.
fn remove_candidate(&mut self, candidate_hash: &CandidateHash) {
if let Some(entry) = self.by_candidate_hash.remove(candidate_hash) {
if let Entry::Occupied(mut e) = self.by_parent_head.entry(entry.parent_head_data_hash) {
e.get_mut().remove(&candidate_hash);
if e.get().is_empty() {
e.remove();
}
}
if let Entry::Occupied(mut e) = self.by_output_head.entry(entry.output_head_data_hash) {
e.get_mut().remove(&candidate_hash);
if e.get().is_empty() {
e.remove();
}
}
}
}
/// Note that an existing candidate has been backed.
fn mark_backed(&mut self, candidate_hash: &CandidateHash) {
if let Some(entry) = self.by_candidate_hash.get_mut(candidate_hash) {
gum::trace!(target: LOG_TARGET, ?candidate_hash, "Candidate marked as backed");
entry.state = CandidateState::Backed;
} else {
gum::trace!(target: LOG_TARGET, ?candidate_hash, "Candidate not found while marking as backed");
}
}
/// Whether a candidate is contained within the storage already.
fn contains(&self, candidate_hash: &CandidateHash) -> bool {
self.by_candidate_hash.contains_key(candidate_hash)
}
/// Return an iterator over references to the stored candidates, in arbitrary order.
fn candidates(&self) -> impl Iterator<Item = &CandidateEntry> {
self.by_candidate_hash.values()
}
/// Try getting head-data by hash.
fn head_data_by_hash(&self, hash: &Hash) -> Option<&HeadData> {
// First, search for candidates outputting this head data and extract the head data
// from their commitments if they exist.
//
// Otherwise, search for candidates building upon this head data and extract the head data
// from their persisted validation data if they exist.
self.by_output_head
.get(hash)
.and_then(|m| m.iter().next())
.and_then(|a_candidate| self.by_candidate_hash.get(a_candidate))
.map(|e| &e.candidate.commitments.head_data)
.or_else(|| {
self.by_parent_head
.get(hash)
.and_then(|m| m.iter().next())
.and_then(|a_candidate| self.by_candidate_hash.get(a_candidate))
.map(|e| &e.candidate.persisted_validation_data.parent_head)
})
}
/// Returns the backed candidates which have the given head data hash as parent.
fn possible_backed_para_children<'a>(
&'a self,
parent_head_hash: &'a Hash,
) -> impl Iterator<Item = &'a CandidateEntry> + 'a {
let by_candidate_hash = &self.by_candidate_hash;
self.by_parent_head
.get(parent_head_hash)
.into_iter()
.flat_map(|hashes| hashes.iter())
.filter_map(move |h| {
by_candidate_hash.get(h).and_then(|candidate| {
(candidate.state == CandidateState::Backed).then_some(candidate)
})
})
}
}
/// The state of a candidate.
///
/// Candidates aren't even considered until they've at least been seconded.
#[derive(Debug, PartialEq, Clone)]
enum CandidateState {
/// The candidate has been seconded.
Seconded,
/// The candidate has been completely backed by the group.
Backed,
}
#[derive(Debug, Clone, PartialEq, Error)]
/// Possible errors when construcing a candidate entry.
pub enum CandidateEntryError {
#[error("Candidate does not match the persisted validation data provided alongside it")]
PersistedValidationDataMismatch,
#[error("Candidate's parent head is equal to its output head. Would introduce a cycle")]
ZeroLengthCycle,
}
#[derive(Debug, Clone)]
/// Representation of a candidate into the [`CandidateStorage`].
pub(crate) struct CandidateEntry {
candidate_hash: CandidateHash,
parent_head_data_hash: Hash,
output_head_data_hash: Hash,
relay_parent: Hash,
candidate: Arc<ProspectiveCandidate>,
state: CandidateState,
}
impl CandidateEntry {
/// Create a new seconded candidate entry.
pub fn new_seconded(
candidate_hash: CandidateHash,
candidate: CommittedCandidateReceipt,
persisted_validation_data: PersistedValidationData,
) -> Result<Self, CandidateEntryError> {
Self::new(candidate_hash, candidate, persisted_validation_data, CandidateState::Seconded)
}
pub fn hash(&self) -> CandidateHash {
self.candidate_hash
}
fn new(
candidate_hash: CandidateHash,
candidate: CommittedCandidateReceipt,
persisted_validation_data: PersistedValidationData,
state: CandidateState,
) -> Result<Self, CandidateEntryError> {
if persisted_validation_data.hash() != candidate.descriptor.persisted_validation_data_hash()
{
return Err(CandidateEntryError::PersistedValidationDataMismatch)
}
let parent_head_data_hash = persisted_validation_data.parent_head.hash();
let output_head_data_hash = candidate.commitments.head_data.hash();
if parent_head_data_hash == output_head_data_hash {
return Err(CandidateEntryError::ZeroLengthCycle)
}
Ok(Self {
candidate_hash,
parent_head_data_hash,
output_head_data_hash,
relay_parent: candidate.descriptor.relay_parent(),
state,
candidate: Arc::new(ProspectiveCandidate {
commitments: candidate.commitments,
persisted_validation_data,
pov_hash: candidate.descriptor.pov_hash(),
validation_code_hash: candidate.descriptor.validation_code_hash(),
}),
})
}
}
impl HypotheticalOrConcreteCandidate for CandidateEntry {
fn commitments(&self) -> Option<&CandidateCommitments> {
Some(&self.candidate.commitments)
}
fn persisted_validation_data(&self) -> Option<&PersistedValidationData> {
Some(&self.candidate.persisted_validation_data)
}
fn validation_code_hash(&self) -> Option<ValidationCodeHash> {
Some(self.candidate.validation_code_hash)
}
fn parent_head_data_hash(&self) -> Hash {
self.parent_head_data_hash
}
fn output_head_data_hash(&self) -> Option<Hash> {
Some(self.output_head_data_hash)
}
fn relay_parent(&self) -> Hash {
self.relay_parent
}
fn candidate_hash(&self) -> CandidateHash {
self.candidate_hash
}
}
/// A candidate existing on-chain but pending availability, for special treatment
/// in the [`Scope`].
#[derive(Debug, Clone)]
pub(crate) struct PendingAvailability {
/// The candidate hash.
pub candidate_hash: CandidateHash,
/// The block info of the relay parent.
pub relay_parent: RelayChainBlockInfo,
}
/// The scope of a [`FragmentChain`].
#[derive(Debug, Clone)]
pub(crate) struct Scope {
/// The relay parent we're currently building on top of.
relay_parent: RelayChainBlockInfo,
/// The other relay parents candidates are allowed to build upon, mapped by the block number.
ancestors: BTreeMap<BlockNumber, RelayChainBlockInfo>,
/// The other relay parents candidates are allowed to build upon, mapped by the block hash.
ancestors_by_hash: HashMap<Hash, RelayChainBlockInfo>,
/// The candidates pending availability at this block.
pending_availability: Vec<PendingAvailability>,
/// The base constraints derived from the latest included candidate.
base_constraints: Constraints,
/// Equal to `max_candidate_depth`.
max_depth: usize,
}
/// An error variant indicating that ancestors provided to a scope
/// had unexpected order.
#[derive(Debug)]
pub(crate) struct UnexpectedAncestor {
/// The block number that this error occurred at.
/// Allow as dead code, but it's being read in logs.
#[allow(dead_code)]
pub number: BlockNumber,
/// The previous seen block number, which did not match `number`.
/// Allow as dead code, but it's being read in logs.
#[allow(dead_code)]
pub prev: BlockNumber,
}
impl Scope {
/// Define a new [`Scope`].
///
/// All arguments are straightforward except the ancestors.
///
/// Ancestors should be in reverse order, starting with the parent
/// of the `relay_parent`, and proceeding backwards in block number
/// increments of 1. Ancestors not following these conditions will be
/// rejected.
///
/// This function will only consume ancestors up to the `min_relay_parent_number` of
/// the `base_constraints`.
///
/// Only ancestors whose children have the same session as the relay-parent's
/// children should be provided.
///
/// It is allowed to provide zero ancestors.
pub fn with_ancestors(
relay_parent: RelayChainBlockInfo,
base_constraints: Constraints,
pending_availability: Vec<PendingAvailability>,
max_depth: usize,
ancestors: impl IntoIterator<Item = RelayChainBlockInfo>,
) -> Result<Self, UnexpectedAncestor> {
let mut ancestors_map = BTreeMap::new();
let mut ancestors_by_hash = HashMap::new();
{
let mut prev = relay_parent.number;
for ancestor in ancestors {
if prev == 0 {
return Err(UnexpectedAncestor { number: ancestor.number, prev })
} else if ancestor.number != prev - 1 {
return Err(UnexpectedAncestor { number: ancestor.number, prev })
} else if prev == base_constraints.min_relay_parent_number {
break
} else {
prev = ancestor.number;
ancestors_by_hash.insert(ancestor.hash, ancestor.clone());
ancestors_map.insert(ancestor.number, ancestor);
}
}
}
Ok(Scope {
relay_parent,
base_constraints,
pending_availability,
max_depth,
ancestors: ancestors_map,
ancestors_by_hash,
})
}
/// Get the earliest relay-parent allowed in the scope of the fragment chain.
pub fn earliest_relay_parent(&self) -> RelayChainBlockInfo {
self.ancestors
.iter()
.next()
.map(|(_, v)| v.clone())
.unwrap_or_else(|| self.relay_parent.clone())
}
/// Get the relay ancestor of the fragment chain by hash.
pub fn ancestor(&self, hash: &Hash) -> Option<RelayChainBlockInfo> {
if hash == &self.relay_parent.hash {
return Some(self.relay_parent.clone())
}
self.ancestors_by_hash.get(hash).map(|info| info.clone())
}
/// Get the base constraints of the scope
pub fn base_constraints(&self) -> &Constraints {
&self.base_constraints
}
/// Whether the candidate in question is one pending availability in this scope.
fn get_pending_availability(
&self,
candidate_hash: &CandidateHash,
) -> Option<&PendingAvailability> {
self.pending_availability.iter().find(|c| &c.candidate_hash == candidate_hash)
}
}
#[cfg_attr(test, derive(Clone))]
/// A node that is part of a `BackedChain`. It holds constraints based on the ancestors in the
/// chain.
struct FragmentNode {
fragment: Fragment,
candidate_hash: CandidateHash,
cumulative_modifications: ConstraintModifications,
parent_head_data_hash: Hash,
output_head_data_hash: Hash,
}
impl FragmentNode {
fn relay_parent(&self) -> Hash {
self.fragment.relay_parent().hash
}
}
impl From<&FragmentNode> for CandidateEntry {
fn from(node: &FragmentNode) -> Self {
// We don't need to perform the checks done in `CandidateEntry::new()`, since a
// `FragmentNode` always comes from a `CandidateEntry`
Self {
candidate_hash: node.candidate_hash,
parent_head_data_hash: node.parent_head_data_hash,
output_head_data_hash: node.output_head_data_hash,
candidate: node.fragment.candidate_clone(),
relay_parent: node.relay_parent(),
// A fragment node is always backed.
state: CandidateState::Backed,
}
}
}
/// A candidate chain of backed/backable candidates.
/// Includes the candidates pending availability and candidates which may be backed on-chain.
#[derive(Default)]
#[cfg_attr(test, derive(Clone))]
struct BackedChain {
// Holds the candidate chain.
chain: Vec<FragmentNode>,
// Index from head data hash to the candidate hash with that head data as a parent.
// Only contains the candidates present in the `chain`.
by_parent_head: HashMap<Hash, CandidateHash>,
// Index from head data hash to the candidate hash outputting that head data.
// Only contains the candidates present in the `chain`.
by_output_head: HashMap<Hash, CandidateHash>,
// A set of the candidate hashes in the `chain`.
candidates: HashSet<CandidateHash>,
}
impl BackedChain {
fn push(&mut self, candidate: FragmentNode) {
self.candidates.insert(candidate.candidate_hash);
self.by_parent_head
.insert(candidate.parent_head_data_hash, candidate.candidate_hash);
self.by_output_head
.insert(candidate.output_head_data_hash, candidate.candidate_hash);
self.chain.push(candidate);
}
fn clear(&mut self) -> Vec<FragmentNode> {
self.by_parent_head.clear();
self.by_output_head.clear();
self.candidates.clear();
std::mem::take(&mut self.chain)
}
fn revert_to_parent_hash<'a>(
&'a mut self,
parent_head_data_hash: &Hash,
) -> impl Iterator<Item = FragmentNode> + 'a {
let mut found_index = None;
for index in 0..self.chain.len() {
let node = &self.chain[index];
if found_index.is_some() {
self.by_parent_head.remove(&node.parent_head_data_hash);
self.by_output_head.remove(&node.output_head_data_hash);
self.candidates.remove(&node.candidate_hash);
} else if &node.output_head_data_hash == parent_head_data_hash {
found_index = Some(index);
}
}
if let Some(index) = found_index {
self.chain.drain(min(index + 1, self.chain.len())..)
} else {
// Don't remove anything, but use drain to satisfy the compiler.
self.chain.drain(0..0)
}
}
fn contains(&self, hash: &CandidateHash) -> bool {
self.candidates.contains(hash)
}
}
/// This is the fragment chain specific to an active leaf.
///
/// It holds the current best backable candidate chain, as well as potential candidates
/// which could become connected to the chain in the future or which could even overwrite the
/// existing chain.
#[cfg_attr(test, derive(Clone))]
pub(crate) struct FragmentChain {
// The current scope, which dictates the on-chain operating constraints that all future
// candidates must adhere to.
scope: Scope,
// The current best chain of backable candidates. It only contains candidates which build on
// top of each other and which have reached the backing quorum. In the presence of potential
// forks, this chain will pick a fork according to the `fork_selection_rule`.
best_chain: BackedChain,
// The potential candidate storage. Contains candidates which are not yet part of the `chain`
// but may become in the future. These can form any tree shape as well as contain any
// unconnected candidates for which we don't know the parent.
unconnected: CandidateStorage,
}
impl FragmentChain {
/// Create a new [`FragmentChain`] with the given scope and populate it with the candidates
/// pending availability.
pub fn init(scope: Scope, mut candidates_pending_availability: CandidateStorage) -> Self {
let mut fragment_chain = Self {
scope,
best_chain: BackedChain::default(),
unconnected: CandidateStorage::default(),
};
// We only need to populate the best backable chain. Candidates pending availability must
// form a chain with the latest included head.
fragment_chain.populate_chain(&mut candidates_pending_availability);
fragment_chain
}
/// Populate the [`FragmentChain`] given the new candidates pending availability and the
/// optional previous fragment chain (of the previous relay parent).
pub fn populate_from_previous(&mut self, prev_fragment_chain: &FragmentChain) {
let mut prev_storage = prev_fragment_chain.unconnected.clone();
for candidate in prev_fragment_chain.best_chain.chain.iter() {
// If they used to be pending availability, don't add them. This is fine
// because:
// - if they still are pending availability, they have already been added to the new
// storage.
// - if they were included, no point in keeping them.
//
// This cannot happen for the candidates in the unconnected storage. The pending
// availability candidates will always be part of the best chain.
if prev_fragment_chain
.scope
.get_pending_availability(&candidate.candidate_hash)
.is_none()
{
let _ = prev_storage.add_candidate_entry(candidate.into());
}
}
// First populate the best backable chain.
self.populate_chain(&mut prev_storage);
// Now that we picked the best backable chain, trim the forks generated by candidates which
// are not present in the best chain.
self.trim_uneligible_forks(&mut prev_storage, None);
// Finally, keep any candidates which haven't been trimmed but still have potential.
self.populate_unconnected_potential_candidates(prev_storage);
}
/// Get the scope of the [`FragmentChain`].
pub fn scope(&self) -> &Scope {
&self.scope
}
/// Returns the number of candidates in the best backable chain.
pub fn best_chain_len(&self) -> usize {
self.best_chain.chain.len()
}
/// Returns the number of candidates in unconnected potential storage.
pub fn unconnected_len(&self) -> usize {
self.unconnected.len()
}
/// Whether the candidate exists as part of the unconnected potential candidates.
pub fn contains_unconnected_candidate(&self, candidate: &CandidateHash) -> bool {
self.unconnected.contains(candidate)
}
/// Return a vector of the chain's candidate hashes, in-order.
pub fn best_chain_vec(&self) -> Vec<CandidateHash> {
self.best_chain.chain.iter().map(|candidate| candidate.candidate_hash).collect()
}
/// Return a vector of the unconnected potential candidate hashes, in arbitrary order.
pub fn unconnected(&self) -> impl Iterator<Item = &CandidateEntry> {
self.unconnected.candidates()
}
/// Return whether this candidate is backed in this chain or the unconnected storage.
pub fn is_candidate_backed(&self, hash: &CandidateHash) -> bool {
self.best_chain.candidates.contains(hash) ||
matches!(
self.unconnected.by_candidate_hash.get(hash),
Some(candidate) if candidate.state == CandidateState::Backed
)
}
/// Mark a candidate as backed. This can trigger a recreation of the best backable chain.
pub fn candidate_backed(&mut self, newly_backed_candidate: &CandidateHash) {
// Already backed.
if self.best_chain.candidates.contains(newly_backed_candidate) {
return
}
let Some(parent_head_hash) = self
.unconnected
.by_candidate_hash
.get(newly_backed_candidate)
.map(|entry| entry.parent_head_data_hash)
else {
// Candidate is not in unconnected storage.
return
};
// Mark the candidate hash.
self.unconnected.mark_backed(newly_backed_candidate);
// Revert to parent_head_hash
if !self.revert_to(&parent_head_hash) {
// If nothing was reverted, there is nothing we can do for now.
return
}
let mut prev_storage = std::mem::take(&mut self.unconnected);
// Populate the chain.
self.populate_chain(&mut prev_storage);
// Now that we picked the best backable chain, trim the forks generated by candidates
// which are not present in the best chain. We can start trimming from this candidate
// onwards.
self.trim_uneligible_forks(&mut prev_storage, Some(parent_head_hash));
// Finally, keep any candidates which haven't been trimmed but still have potential.
self.populate_unconnected_potential_candidates(prev_storage);
}
/// Checks if this candidate could be added in the future to this chain.
/// This will return `Error::CandidateAlreadyKnown` if the candidate is already in the chain or
/// the unconnected candidate storage.
pub fn can_add_candidate_as_potential(
&self,
candidate: &impl HypotheticalOrConcreteCandidate,
) -> Result<(), Error> {
let candidate_hash = candidate.candidate_hash();
if self.best_chain.contains(&candidate_hash) || self.unconnected.contains(&candidate_hash) {
return Err(Error::CandidateAlreadyKnown)
}
self.check_potential(candidate)
}
/// Try adding a seconded candidate, if the candidate has potential. It will never be added to
/// the chain directly in the seconded state, it will only be part of the unconnected storage.
pub fn try_adding_seconded_candidate(
&mut self,
candidate: &CandidateEntry,
) -> Result<(), Error> {
if candidate.state == CandidateState::Backed {
return Err(Error::IntroduceBackedCandidate);
}
self.can_add_candidate_as_potential(candidate)?;
// This clone is cheap, as it uses an Arc for the expensive stuff.
// We can't consume the candidate because other fragment chains may use it also.
self.unconnected.add_candidate_entry(candidate.clone())?;
Ok(())
}
/// Try getting the full head data associated with this hash.
pub fn get_head_data_by_hash(&self, head_data_hash: &Hash) -> Option<HeadData> {
// First, see if this is the head data of the latest included candidate.
let required_parent = &self.scope.base_constraints().required_parent;
if &required_parent.hash() == head_data_hash {
return Some(required_parent.clone())
}
// Cheaply check if the head data is in the best backable chain.
let has_head_data_in_chain = self
.best_chain
.by_parent_head
.get(head_data_hash)
.or_else(|| self.best_chain.by_output_head.get(head_data_hash))
.is_some();
if has_head_data_in_chain {
return self.best_chain.chain.iter().find_map(|candidate| {
if &candidate.parent_head_data_hash == head_data_hash {
Some(
candidate
.fragment
.candidate()
.persisted_validation_data
.parent_head
.clone(),
)
} else if &candidate.output_head_data_hash == head_data_hash {
Some(candidate.fragment.candidate().commitments.head_data.clone())
} else {
None
}
});
}
// Lastly, try getting the head data from the unconnected candidates.
self.unconnected.head_data_by_hash(head_data_hash).cloned()
}
/// Select `count` candidates after the given `ancestors` which can be backed on chain next.
///
/// The intention of the `ancestors` is to allow queries on the basis of
/// one or more candidates which were previously pending availability becoming
/// available or candidates timing out.
pub fn find_backable_chain(
&self,
ancestors: Ancestors,
count: u32,
) -> Vec<(CandidateHash, Hash)> {
if count == 0 {
return vec![]
}
let base_pos = self.find_ancestor_path(ancestors);
let actual_end_index =
std::cmp::min(base_pos + (count as usize), self.best_chain.chain.len());
let mut res = Vec::with_capacity(actual_end_index - base_pos);
for elem in &self.best_chain.chain[base_pos..actual_end_index] {
// Only supply candidates which are not yet pending availability. `ancestors` should
// have already contained them, but check just in case.
if self.scope.get_pending_availability(&elem.candidate_hash).is_none() {
res.push((elem.candidate_hash, elem.relay_parent()));
} else {
break
}
}
res
}
// Tries to orders the ancestors into a viable path from root to the last one.
// Stops when the ancestors are all used or when a node in the chain is not present in the
// ancestor set. Returns the index in the chain were the search stopped.
fn find_ancestor_path(&self, mut ancestors: Ancestors) -> usize {
if self.best_chain.chain.is_empty() {
return 0;
}
for (index, candidate) in self.best_chain.chain.iter().enumerate() {
if !ancestors.remove(&candidate.candidate_hash) {
return index
}
}
// This means that we found the entire chain in the ancestor set. There won't be anything
// left to back.
self.best_chain.chain.len()
}
// Return the earliest relay parent a new candidate can have in order to be added to the chain
// right now. This is the relay parent of the last candidate in the chain.
// The value returned may not be valid if we want to add a candidate pending availability, which
// may have a relay parent which is out of scope. Special handling is needed in that case.
// `None` is returned if the candidate's relay parent info cannot be found.
fn earliest_relay_parent(&self) -> Option<RelayChainBlockInfo> {
if let Some(last_candidate) = self.best_chain.chain.last() {
self.scope.ancestor(&last_candidate.relay_parent()).or_else(|| {
// if the relay-parent is out of scope _and_ it is in the chain,
// it must be a candidate pending availability.
self.scope
.get_pending_availability(&last_candidate.candidate_hash)
.map(|c| c.relay_parent.clone())
})
} else {
Some(self.scope.earliest_relay_parent())
}
}
// Return the earliest relay parent a potential candidate may have for it to ever be added to
// the chain. This is the relay parent of the last candidate pending availability or the
// earliest relay parent in scope.
fn earliest_relay_parent_pending_availability(&self) -> RelayChainBlockInfo {
self.best_chain
.chain
.iter()
.rev()
.find_map(|candidate| {
self.scope
.get_pending_availability(&candidate.candidate_hash)
.map(|c| c.relay_parent.clone())
})
.unwrap_or_else(|| self.scope.earliest_relay_parent())
}
// Populate the unconnected potential candidate storage starting from a previous storage.
fn populate_unconnected_potential_candidates(&mut self, old_storage: CandidateStorage) {
for candidate in old_storage.by_candidate_hash.into_values() {
// Sanity check, all pending availability candidates should be already present in the
// chain.
if self.scope.get_pending_availability(&candidate.candidate_hash).is_some() {
continue
}
match self.can_add_candidate_as_potential(&candidate) {
Ok(()) => {
let _ = self.unconnected.add_candidate_entry(candidate);
},
// Swallow these errors as they can legitimately happen when pruning stale
// candidates.
Err(_) => {},
};
}
}
// Check whether a candidate outputting this head data would introduce a cycle or multiple paths
// to the same state. Trivial 0-length cycles are checked in `CandidateEntry::new`.
fn check_cycles_or_invalid_tree(&self, output_head_hash: &Hash) -> Result<(), Error> {
// this should catch a cycle where this candidate would point back to the parent of some
// candidate in the chain.
if self.best_chain.by_parent_head.contains_key(output_head_hash) {
return Err(Error::Cycle)
}
// multiple paths to the same state, which can't happen for a chain.
if self.best_chain.by_output_head.contains_key(output_head_hash) {
return Err(Error::MultiplePaths)
}
Ok(())
}
// Checks the potential of a candidate to be added to the chain now or in the future.
// It works both with concrete candidates for which we have the full PVD and committed receipt,
// but also does some more basic checks for incomplete candidates (before even fetching them).
fn check_potential(
&self,
candidate: &impl HypotheticalOrConcreteCandidate,
) -> Result<(), Error> {
let relay_parent = candidate.relay_parent();
let parent_head_hash = candidate.parent_head_data_hash();
// trivial 0-length cycle.
if let Some(output_head_hash) = candidate.output_head_data_hash() {
if parent_head_hash == output_head_hash {
return Err(Error::ZeroLengthCycle)
}
}
// Check if the relay parent is in scope.
let Some(relay_parent) = self.scope.ancestor(&relay_parent) else {
return Err(Error::RelayParentNotInScope(
relay_parent,
self.scope.earliest_relay_parent().hash,
))
};
// Check if the relay parent moved backwards from the latest candidate pending availability.
let earliest_rp_of_pending_availability = self.earliest_relay_parent_pending_availability();
if relay_parent.number < earliest_rp_of_pending_availability.number {
return Err(Error::RelayParentPrecedesCandidatePendingAvailability(
relay_parent.hash,
earliest_rp_of_pending_availability.hash,
))
}
// If it's a fork with a backed candidate in the current chain.
if let Some(other_candidate) = self.best_chain.by_parent_head.get(&parent_head_hash) {
if self.scope().get_pending_availability(other_candidate).is_some() {
// Cannot accept a fork with a candidate pending availability.
return Err(Error::ForkWithCandidatePendingAvailability(*other_candidate))
}
// If the candidate is backed and in the current chain, accept only a candidate
// according to the fork selection rule.
if fork_selection_rule(other_candidate, &candidate.candidate_hash()) == Ordering::Less {
return Err(Error::ForkChoiceRule(*other_candidate))
}
}
// Try seeing if the parent candidate is in the current chain or if it is the latest
// included candidate. If so, get the constraints the candidate must satisfy.
let (constraints, maybe_min_relay_parent_number) =
if let Some(parent_candidate) = self.best_chain.by_output_head.get(&parent_head_hash) {
let Some(parent_candidate) =
self.best_chain.chain.iter().find(|c| &c.candidate_hash == parent_candidate)
else {
// Should never really happen.
return Err(Error::ParentCandidateNotFound)
};
(
self.scope
.base_constraints
.apply_modifications(&parent_candidate.cumulative_modifications)
.map_err(Error::ComputeConstraints)?,
self.scope.ancestor(&parent_candidate.relay_parent()).map(|rp| rp.number),
)
} else if self.scope.base_constraints.required_parent.hash() == parent_head_hash {
// It builds on the latest included candidate.
(self.scope.base_constraints.clone(), None)
} else {
// If the parent is not yet part of the chain, there's nothing else we can check for
// now.
return Ok(())
};
// Check for cycles or invalid tree transitions.
if let Some(ref output_head_hash) = candidate.output_head_data_hash() {
self.check_cycles_or_invalid_tree(output_head_hash)?;
}
// Check against constraints if we have a full concrete candidate.
if let (Some(commitments), Some(pvd), Some(validation_code_hash)) = (
candidate.commitments(),
candidate.persisted_validation_data(),
candidate.validation_code_hash(),
) {
Fragment::check_against_constraints(
&relay_parent,
&constraints,
commitments,
&validation_code_hash,
pvd,
)
.map_err(Error::CheckAgainstConstraints)?;
}
if relay_parent.number < constraints.min_relay_parent_number {
return Err(Error::RelayParentMovedBackwards)
}
if let Some(earliest_rp) = maybe_min_relay_parent_number {
if relay_parent.number < earliest_rp {
return Err(Error::RelayParentMovedBackwards)
}
}
Ok(())
}
// Once the backable chain was populated, trim the forks generated by candidates which
// are not present in the best chain. Fan this out into a full breadth-first search.
// If `starting_point` is `Some()`, start the search from the candidates having this parent head
// hash.
fn trim_uneligible_forks(&self, storage: &mut CandidateStorage, starting_point: Option<Hash>) {
// Start out with the candidates in the chain. They are all valid candidates.
let mut queue: VecDeque<_> = if let Some(starting_point) = starting_point {
[(starting_point, true)].into_iter().collect()
} else {
if self.best_chain.chain.is_empty() {
[(self.scope.base_constraints.required_parent.hash(), true)]
.into_iter()
.collect()
} else {
self.best_chain.chain.iter().map(|c| (c.parent_head_data_hash, true)).collect()
}
};
// To make sure that cycles don't make us loop forever, keep track of the visited parent
// heads.
let mut visited = HashSet::new();
while let Some((parent, parent_has_potential)) = queue.pop_front() {
visited.insert(parent);
let Some(children) = storage.by_parent_head.get(&parent) else { continue };
// Cannot remove while iterating so store them here temporarily.
let mut to_remove = vec![];
for child_hash in children.iter() {
let Some(child) = storage.by_candidate_hash.get(child_hash) else { continue };
// Already visited this parent. Either is a cycle or multiple paths that lead to the
// same candidate. Either way, stop this branch to avoid looping forever.
if visited.contains(&child.output_head_data_hash) {
continue
}
// Only keep a candidate if its full ancestry was already kept as potential and this
// candidate itself has potential.
if parent_has_potential && self.check_potential(child).is_ok() {
queue.push_back((child.output_head_data_hash, true));
} else {
// Otherwise, remove this candidate and continue looping for its children, but
// mark the parent's potential as `false`. We only want to remove its
// children.
to_remove.push(*child_hash);
queue.push_back((child.output_head_data_hash, false));
}
}
for hash in to_remove {
storage.remove_candidate(&hash);
}
}
}
// Populate the fragment chain with candidates from the supplied `CandidateStorage`.
// Can be called by the constructor or when backing a new candidate.
// When this is called, it may cause the previous chain to be completely erased or it may add
// more than one candidate.
fn populate_chain(&mut self, storage: &mut CandidateStorage) {
let mut cumulative_modifications =
if let Some(last_candidate) = self.best_chain.chain.last() {
last_candidate.cumulative_modifications.clone()
} else {
ConstraintModifications::identity()
};
let Some(mut earliest_rp) = self.earliest_relay_parent() else { return };
loop {
if self.best_chain.chain.len() > self.scope.max_depth {
break;
}
let child_constraints =
match self.scope.base_constraints.apply_modifications(&cumulative_modifications) {
Err(e) => {
gum::debug!(
target: LOG_TARGET,
new_parent_head = ?cumulative_modifications.required_parent,
err = ?e,
"Failed to apply modifications",
);
break
},
Ok(c) => c,
};
let required_head_hash = child_constraints.required_parent.hash();
// Select the few possible backed/backable children which can be added to the chain
// right now.
let possible_children = storage
.possible_backed_para_children(&required_head_hash)
.filter_map(|candidate| {
// Only select a candidate if:
// 1. it does not introduce a fork or a cycle.
// 2. parent hash is correct.
// 3. relay-parent does not move backwards.
// 4. all non-pending-availability candidates have relay-parent in scope.
// 5. candidate outputs fulfill constraints
let pending = self.scope.get_pending_availability(&candidate.candidate_hash);
let Some(relay_parent) = pending
.map(|p| p.relay_parent.clone())
.or_else(|| self.scope.ancestor(&candidate.relay_parent))
else {
return None
};
if self.check_cycles_or_invalid_tree(&candidate.output_head_data_hash).is_err()
{
return None
}
// require: candidates don't move backwards
// and only pending availability candidates can be out-of-scope.
//
// earliest_rp can be before the earliest relay parent in the scope
// when the parent is a pending availability candidate as well, but
// only other pending candidates can have a relay parent out of scope.
let min_relay_parent_number = pending
.map(|p| match self.best_chain.chain.len() {
0 => p.relay_parent.number,
_ => earliest_rp.number,
})
.unwrap_or_else(|| earliest_rp.number);
if relay_parent.number < min_relay_parent_number {
return None // relay parent moved backwards.
}
// don't add candidates if they're already present in the chain.
// this can never happen, as candidates can only be duplicated if there's a
// cycle and we shouldn't have allowed for a cycle to be chained.
if self.best_chain.contains(&candidate.candidate_hash) {
return None
}
let fragment = {
let mut constraints = child_constraints.clone();
if let Some(ref p) = pending {
// overwrite for candidates pending availability as a special-case.
constraints.min_relay_parent_number = p.relay_parent.number;
}
let f = Fragment::new(
relay_parent.clone(),
constraints,
// It's cheap to clone because it's wrapped in an Arc
candidate.candidate.clone(),
);
match f {
Ok(f) => f,
Err(e) => {
gum::debug!(
target: LOG_TARGET,
err = ?e,
?relay_parent,
candidate_hash = ?candidate.candidate_hash,
"Failed to instantiate fragment",
);
return None
},
}
};
Some((
fragment,
candidate.candidate_hash,
candidate.output_head_data_hash,
candidate.parent_head_data_hash,
))
});
// Choose the best candidate.
let best_candidate =
possible_children.min_by(|(_, ref child1, _, _), (_, ref child2, _, _)| {
// Always pick a candidate pending availability as best.
if self.scope.get_pending_availability(child1).is_some() {
Ordering::Less
} else if self.scope.get_pending_availability(child2).is_some() {
Ordering::Greater
} else {
// Otherwise, use the fork selection rule.
fork_selection_rule(child1, child2)
}
});
if let Some((fragment, candidate_hash, output_head_data_hash, parent_head_data_hash)) =
best_candidate
{
// Remove the candidate from storage.
storage.remove_candidate(&candidate_hash);
// Update the cumulative constraint modifications.
cumulative_modifications.stack(fragment.constraint_modifications());
// Update the earliest rp
earliest_rp = fragment.relay_parent().clone();
let node = FragmentNode {
fragment,
candidate_hash,
parent_head_data_hash,
output_head_data_hash,
cumulative_modifications: cumulative_modifications.clone(),
};
// Add the candidate to the chain now.
self.best_chain.push(node);
} else {
break
}
}
}
// Revert the best backable chain so that the last candidate will be one outputting the given
// `parent_head_hash`. If the `parent_head_hash` is exactly the required parent of the base
// constraints (builds on the latest included candidate), revert the entire chain.
// Return false if we couldn't find the parent head hash.
fn revert_to(&mut self, parent_head_hash: &Hash) -> bool {
let mut removed_items = None;
if &self.scope.base_constraints.required_parent.hash() == parent_head_hash {
removed_items = Some(self.best_chain.clear());
}
if removed_items.is_none() && self.best_chain.by_output_head.contains_key(parent_head_hash)
{
removed_items = Some(self.best_chain.revert_to_parent_hash(parent_head_hash).collect());
}
let Some(removed_items) = removed_items else { return false };
// Even if it's empty, we need to return true, because we'll be able to add a new candidate
// to the chain.
for node in &removed_items {
let _ = self.unconnected.add_candidate_entry(node.into());
}
true
}
}