1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Implements the tree-view over the data backend which we use to determine
//! viable leaves.
//!
//! The metadata is structured as a tree, with the root implicitly being the
//! finalized block, which is not stored as part of the tree.
//!
//! Each direct descendant of the finalized block acts as its own sub-tree,
//! and as the finalized block advances, orphaned sub-trees are entirely pruned.
use polkadot_node_primitives::BlockWeight;
use polkadot_node_subsystem::ChainApiError;
use polkadot_primitives::{BlockNumber, Hash};
use std::collections::HashMap;
use super::{Approval, BlockEntry, Error, LeafEntry, Timestamp, ViabilityCriteria, LOG_TARGET};
use crate::backend::{Backend, OverlayedBackend};
// A viability update to be applied to a block.
struct ViabilityUpdate(Option<Hash>);
impl ViabilityUpdate {
// Apply the viability update to a single block, yielding the updated
// block entry along with a vector of children and the updates to apply
// to them.
fn apply(self, mut entry: BlockEntry) -> (BlockEntry, Vec<(Hash, ViabilityUpdate)>) {
// 1. When an ancestor has changed from unviable to viable,
// we erase the `earliest_unviable_ancestor` of all descendants
// until encountering a explicitly unviable descendant D.
//
// We then update the `earliest_unviable_ancestor` for all
// descendants of D to be equal to D.
//
// 2. When an ancestor A has changed from viable to unviable,
// we update the `earliest_unviable_ancestor` for all blocks
// to A.
//
// The following algorithm covers both cases.
//
// Furthermore, if there has been any change in viability,
// it is necessary to visit every single descendant of the root
// block.
//
// If a block B was unviable and is now viable, then every descendant
// has an `earliest_unviable_ancestor` which must be updated either
// to nothing or to the new earliest unviable ancestor.
//
// If a block B was viable and is now unviable, then every descendant
// has an `earliest_unviable_ancestor` which needs to be set to B.
let maybe_earliest_unviable = self.0;
let next_earliest_unviable = {
if maybe_earliest_unviable.is_none() && !entry.viability.is_explicitly_viable() {
Some(entry.block_hash)
} else {
maybe_earliest_unviable
}
};
entry.viability.earliest_unviable_ancestor = maybe_earliest_unviable;
let recurse = entry
.children
.iter()
.cloned()
.map(move |c| (c, ViabilityUpdate(next_earliest_unviable)))
.collect();
(entry, recurse)
}
}
// Propagate viability update to descendants of the given block. This writes
// the `base` entry as well as all descendants. If the parent of the block
// entry is not viable, this will not affect any descendants.
//
// If the block entry provided is self-unviable, then it's assumed that an
// unviability update needs to be propagated to descendants.
//
// If the block entry provided is self-viable, then it's assumed that a
// viability update needs to be propagated to descendants.
fn propagate_viability_update(
backend: &mut OverlayedBackend<impl Backend>,
base: BlockEntry,
) -> Result<(), Error> {
enum BlockEntryRef {
Explicit(BlockEntry),
Hash(Hash),
}
if !base.viability.is_parent_viable() {
// If the parent of the block is still unviable,
// then the `earliest_viable_ancestor` will not change
// regardless of the change in the block here.
//
// Furthermore, in such cases, the set of viable leaves
// does not change at all.
backend.write_block_entry(base);
return Ok(())
}
let mut viable_leaves = backend.load_leaves()?;
// A mapping of Block Hash -> number
// Where the hash is the hash of a viable block which has
// at least 1 unviable child.
//
// The number is the number of known unviable children which is known
// as the pivot count.
let mut viability_pivots = HashMap::new();
// If the base block is itself explicitly unviable,
// this will change to a `Some(base_hash)` after the first
// invocation.
let viability_update = ViabilityUpdate(None);
// Recursively apply update to tree.
//
// As we go, we remove any blocks from the leaves which are no longer viable
// leaves. We also add blocks to the leaves-set which are obviously viable leaves.
// And we build up a frontier of blocks which may either be viable leaves or
// the ancestors of one.
let mut tree_frontier = vec![(BlockEntryRef::Explicit(base), viability_update)];
while let Some((entry_ref, update)) = tree_frontier.pop() {
let entry = match entry_ref {
BlockEntryRef::Explicit(entry) => entry,
BlockEntryRef::Hash(hash) => match backend.load_block_entry(&hash)? {
None => {
gum::warn!(
target: LOG_TARGET,
block_hash = ?hash,
"Missing expected block entry"
);
continue
},
Some(entry) => entry,
},
};
let (new_entry, children) = update.apply(entry);
if new_entry.viability.is_viable() {
// A block which is viable has a parent which is obviously not
// in the viable leaves set.
viable_leaves.remove(&new_entry.parent_hash);
// Furthermore, if the block is viable and has no children,
// it is viable by definition.
if new_entry.children.is_empty() {
viable_leaves.insert(new_entry.leaf_entry());
}
} else {
// A block which is not viable is certainly not a viable leaf.
viable_leaves.remove(&new_entry.block_hash);
// When the parent is viable but the entry itself is not, that means
// that the parent is a viability pivot. As we visit the children
// of a viability pivot, we build up an exhaustive pivot count.
if new_entry.viability.is_parent_viable() {
*viability_pivots.entry(new_entry.parent_hash).or_insert(0) += 1;
}
}
backend.write_block_entry(new_entry);
tree_frontier
.extend(children.into_iter().map(|(h, update)| (BlockEntryRef::Hash(h), update)));
}
// Revisit the viability pivots now that we've traversed the entire subtree.
// After this point, the viable leaves set is fully updated. A proof follows.
//
// If the base has become unviable, then we've iterated into all descendants,
// made them unviable and removed them from the set. We know that the parent is
// viable as this function is a no-op otherwise, so we need to see if the parent
// has other children or not.
//
// If the base has become viable, then we've iterated into all descendants,
// and found all blocks which are viable and have no children. We've already added
// those blocks to the leaf set, but what we haven't detected
// is blocks which are viable and have children, but all of the children are
// unviable.
//
// The solution of viability pivots addresses both of these:
//
// When the base has become unviable, the parent's viability is unchanged and therefore
// any leaves descending from parent but not base are still in the viable leaves set.
// If the parent has only one child which is the base, the parent is now a viable leaf.
// We've already visited the base in recursive search so the set of pivots should
// contain only a single entry `(parent, 1)`. qed.
//
// When the base has become viable, we've already iterated into every descendant
// of the base and thus have collected a set of pivots whose corresponding pivot
// counts have already been exhaustively computed from their children. qed.
for (pivot, pivot_count) in viability_pivots {
match backend.load_block_entry(&pivot)? {
None => {
// This means the block is finalized. We might reach this
// code path when the base is a child of the finalized block
// and has become unviable.
//
// Each such child is the root of its own tree
// which, as an invariant, does not depend on the viability
// of the finalized block. So no siblings need to be inspected
// and we can ignore it safely.
//
// Furthermore, if the set of viable leaves is empty, the
// finalized block is implicitly the viable leaf.
continue
},
Some(entry) =>
if entry.children.len() == pivot_count {
viable_leaves.insert(entry.leaf_entry());
},
}
}
backend.write_leaves(viable_leaves);
Ok(())
}
/// Imports a new block and applies any reversions to ancestors or the block itself.
pub(crate) fn import_block(
backend: &mut OverlayedBackend<impl Backend>,
block_hash: Hash,
block_number: BlockNumber,
parent_hash: Hash,
reversion_logs: Vec<BlockNumber>,
weight: BlockWeight,
stagnant_at: Timestamp,
) -> Result<(), Error> {
let block_entry =
add_block(backend, block_hash, block_number, parent_hash, weight, stagnant_at)?;
apply_reversions(backend, block_entry, reversion_logs)?;
Ok(())
}
// Load the given ancestor's block entry, in descending order from the `block_hash`.
// The ancestor_number must be not higher than the `block_entry`'s.
//
// The returned entry will be `None` if the range is invalid or any block in the path had
// no entry present. If any block entry was missing, it can safely be assumed to
// be finalized.
fn load_ancestor(
backend: &mut OverlayedBackend<impl Backend>,
block_entry: &BlockEntry,
ancestor_number: BlockNumber,
) -> Result<Option<BlockEntry>, Error> {
let block_hash = block_entry.block_hash;
let block_number = block_entry.block_number;
if block_number == ancestor_number {
return Ok(Some(block_entry.clone()))
} else if block_number < ancestor_number {
return Ok(None)
}
let mut current_hash = block_hash;
let mut current_entry = None;
let segment_length = (block_number - ancestor_number) + 1;
for _ in 0..segment_length {
match backend.load_block_entry(¤t_hash)? {
None => return Ok(None),
Some(entry) => {
let parent_hash = entry.parent_hash;
current_entry = Some(entry);
current_hash = parent_hash;
},
}
}
// Current entry should always be `Some` here.
Ok(current_entry)
}
// Add a new block to the tree, which is assumed to be unreverted and unapproved,
// but not stagnant. It inherits viability from its parent, if any.
//
// This updates the parent entry, if any, and updates the viable leaves set accordingly.
// This also schedules a stagnation-check update and adds the block to the blocks-by-number
// mapping.
fn add_block(
backend: &mut OverlayedBackend<impl Backend>,
block_hash: Hash,
block_number: BlockNumber,
parent_hash: Hash,
weight: BlockWeight,
stagnant_at: Timestamp,
) -> Result<BlockEntry, Error> {
let mut leaves = backend.load_leaves()?;
let parent_entry = backend.load_block_entry(&parent_hash)?;
let inherited_viability =
parent_entry.as_ref().and_then(|parent| parent.non_viable_ancestor_for_child());
// 1. Add the block to the DB assuming it's not reverted.
let block_entry = BlockEntry {
block_hash,
block_number,
parent_hash,
children: Vec::new(),
viability: ViabilityCriteria {
earliest_unviable_ancestor: inherited_viability,
explicitly_reverted: false,
approval: Approval::Unapproved,
},
weight,
};
backend.write_block_entry(block_entry.clone());
// 2. Update leaves if inherited viability is fine.
if inherited_viability.is_none() {
leaves.remove(&parent_hash);
leaves.insert(LeafEntry { block_hash, block_number, weight });
backend.write_leaves(leaves);
}
// 3. Update and write the parent
if let Some(mut parent_entry) = parent_entry {
parent_entry.children.push(block_hash);
backend.write_block_entry(parent_entry);
}
// 4. Add to blocks-by-number.
let mut blocks_by_number = backend.load_blocks_by_number(block_number)?;
blocks_by_number.push(block_hash);
backend.write_blocks_by_number(block_number, blocks_by_number);
// 5. Add stagnation timeout.
let mut stagnant_at_list = backend.load_stagnant_at(stagnant_at)?;
stagnant_at_list.push(block_hash);
backend.write_stagnant_at(stagnant_at, stagnant_at_list);
Ok(block_entry)
}
/// Assuming that a block is already imported, accepts the number of the block
/// as well as a list of reversions triggered by the block in ascending order.
fn apply_reversions(
backend: &mut OverlayedBackend<impl Backend>,
block_entry: BlockEntry,
reversions: Vec<BlockNumber>,
) -> Result<(), Error> {
// Note: since revert numbers are in ascending order, the expensive propagation
// of unviability is only heavy on the first log.
for revert_number in reversions {
let maybe_block_entry = load_ancestor(backend, &block_entry, revert_number)?;
if let Some(entry) = &maybe_block_entry {
gum::trace!(
target: LOG_TARGET,
?revert_number,
revert_hash = ?entry.block_hash,
"Block marked as reverted via scraped on-chain reversions"
);
}
revert_single_block_entry_if_present(
backend,
maybe_block_entry,
None,
revert_number,
Some(block_entry.block_hash),
Some(block_entry.block_number),
)?;
}
Ok(())
}
/// Marks a single block as explicitly reverted, then propagates viability updates
/// to all its children. This is triggered when the disputes subsystem signals that
/// a dispute has concluded against a candidate.
pub(crate) fn apply_single_reversion(
backend: &mut OverlayedBackend<impl Backend>,
revert_hash: Hash,
revert_number: BlockNumber,
) -> Result<(), Error> {
gum::trace!(
target: LOG_TARGET,
?revert_number,
?revert_hash,
"Block marked as reverted via ChainSelectionMessage::RevertBlocks"
);
let maybe_block_entry = backend.load_block_entry(&revert_hash)?;
revert_single_block_entry_if_present(
backend,
maybe_block_entry,
Some(revert_hash),
revert_number,
None,
None,
)?;
Ok(())
}
fn revert_single_block_entry_if_present(
backend: &mut OverlayedBackend<impl Backend>,
maybe_block_entry: Option<BlockEntry>,
maybe_revert_hash: Option<Hash>,
revert_number: BlockNumber,
maybe_reporting_hash: Option<Hash>,
maybe_reporting_number: Option<BlockNumber>,
) -> Result<(), Error> {
match maybe_block_entry {
None => {
gum::warn!(
target: LOG_TARGET,
?maybe_revert_hash,
revert_target = revert_number,
?maybe_reporting_hash,
?maybe_reporting_number,
"The hammer has dropped. \
The protocol has indicated that a finalized block be reverted. \
Please inform an adult.",
);
},
Some(mut block_entry) => {
gum::info!(
target: LOG_TARGET,
?maybe_revert_hash,
revert_target = revert_number,
?maybe_reporting_hash,
?maybe_reporting_number,
"Unfinalized block reverted due to a bad parachain block.",
);
block_entry.viability.explicitly_reverted = true;
// Marks children of reverted block as non-viable
propagate_viability_update(backend, block_entry)?;
},
}
Ok(())
}
/// Finalize a block with the given number and hash.
///
/// This will prune all sub-trees not descending from the given block,
/// all block entries at or before the given height,
/// and will update the viability of all sub-trees descending from the given
/// block if the finalized block was not viable.
///
/// This is assumed to start with a fresh backend, and will produce
/// an overlay over the backend with all the changes applied.
pub(super) fn finalize_block<'a, B: Backend + 'a>(
backend: &'a B,
finalized_hash: Hash,
finalized_number: BlockNumber,
) -> Result<OverlayedBackend<'a, B>, Error> {
let earliest_stored_number = backend.load_first_block_number()?;
let mut backend = OverlayedBackend::new(backend);
let earliest_stored_number = match earliest_stored_number {
None => {
// This implies that there are no unfinalized blocks and hence nothing
// to update.
return Ok(backend)
},
Some(e) => e,
};
let mut viable_leaves = backend.load_leaves()?;
// Walk all numbers up to the finalized number and remove those entries.
for number in earliest_stored_number..finalized_number {
let blocks_at = backend.load_blocks_by_number(number)?;
backend.delete_blocks_by_number(number);
for block in blocks_at {
viable_leaves.remove(&block);
backend.delete_block_entry(&block);
}
}
// Remove all blocks at the finalized height, with the exception of the finalized block,
// and their descendants, recursively.
{
let blocks_at_finalized_height = backend.load_blocks_by_number(finalized_number)?;
backend.delete_blocks_by_number(finalized_number);
let mut frontier: Vec<_> = blocks_at_finalized_height
.into_iter()
.filter(|h| h != &finalized_hash)
.map(|h| (h, finalized_number))
.collect();
while let Some((dead_hash, dead_number)) = frontier.pop() {
let entry = backend.load_block_entry(&dead_hash)?;
backend.delete_block_entry(&dead_hash);
viable_leaves.remove(&dead_hash);
// This does a few extra `clone`s but is unlikely to be
// a bottleneck. Code complexity is very low as a result.
let mut blocks_at_height = backend.load_blocks_by_number(dead_number)?;
blocks_at_height.retain(|h| h != &dead_hash);
backend.write_blocks_by_number(dead_number, blocks_at_height);
// Add all children to the frontier.
let next_height = dead_number + 1;
frontier.extend(entry.into_iter().flat_map(|e| e.children).map(|h| (h, next_height)));
}
}
// Visit and remove the finalized block, fetching its children.
let children_of_finalized = {
let finalized_entry = backend.load_block_entry(&finalized_hash)?;
backend.delete_block_entry(&finalized_hash);
viable_leaves.remove(&finalized_hash);
finalized_entry.into_iter().flat_map(|e| e.children)
};
backend.write_leaves(viable_leaves);
// Update the viability of each child.
for child in children_of_finalized {
if let Some(mut child) = backend.load_block_entry(&child)? {
// Finalized blocks are always viable.
child.viability.earliest_unviable_ancestor = None;
propagate_viability_update(&mut backend, child)?;
} else {
gum::debug!(
target: LOG_TARGET,
?finalized_hash,
finalized_number,
child_hash = ?child,
"Missing child of finalized block",
);
// No need to do anything, but this is an inconsistent state.
}
}
Ok(backend)
}
/// Mark a block as approved and update the viability of itself and its
/// descendants accordingly.
pub(super) fn approve_block(
backend: &mut OverlayedBackend<impl Backend>,
approved_hash: Hash,
) -> Result<(), Error> {
if let Some(mut entry) = backend.load_block_entry(&approved_hash)? {
let was_viable = entry.viability.is_viable();
entry.viability.approval = Approval::Approved;
let is_viable = entry.viability.is_viable();
// Approval can change the viability in only one direction.
// If the viability has changed, then we propagate that to children
// and recalculate the viable leaf set.
if !was_viable && is_viable {
propagate_viability_update(backend, entry)?;
} else {
backend.write_block_entry(entry);
}
} else {
gum::debug!(
target: LOG_TARGET,
block_hash = ?approved_hash,
"Missing entry for freshly-approved block. Ignoring"
);
}
Ok(())
}
/// Check whether any blocks up to the given timestamp are stagnant and update
/// accordingly.
///
/// This accepts a fresh backend and returns an overlay on top of it representing
/// all changes made.
pub(super) fn detect_stagnant<'a, B: 'a + Backend>(
backend: &'a B,
up_to: Timestamp,
max_elements: usize,
) -> Result<OverlayedBackend<'a, B>, Error> {
let stagnant_up_to = backend.load_stagnant_at_up_to(up_to, max_elements)?;
let mut backend = OverlayedBackend::new(backend);
let (min_ts, max_ts) = match stagnant_up_to.len() {
0 => (0 as Timestamp, 0 as Timestamp),
1 => (stagnant_up_to[0].0, stagnant_up_to[0].0),
n => (stagnant_up_to[0].0, stagnant_up_to[n - 1].0),
};
// As this is in ascending order, only the earliest stagnant
// blocks will involve heavy viability propagations.
gum::debug!(
target: LOG_TARGET,
?up_to,
?min_ts,
?max_ts,
"Prepared {} stagnant entries for checking/pruning",
stagnant_up_to.len()
);
for (timestamp, maybe_stagnant) in stagnant_up_to {
backend.delete_stagnant_at(timestamp);
for block_hash in maybe_stagnant {
if let Some(mut entry) = backend.load_block_entry(&block_hash)? {
let was_viable = entry.viability.is_viable();
if let Approval::Unapproved = entry.viability.approval {
entry.viability.approval = Approval::Stagnant;
}
let is_viable = entry.viability.is_viable();
gum::trace!(
target: LOG_TARGET,
?block_hash,
?timestamp,
?was_viable,
?is_viable,
"Found existing stagnant entry"
);
if was_viable && !is_viable {
propagate_viability_update(&mut backend, entry)?;
} else {
backend.write_block_entry(entry);
}
} else {
gum::trace!(
target: LOG_TARGET,
?block_hash,
?timestamp,
"Found non-existing stagnant entry"
);
}
}
}
Ok(backend)
}
/// Prune stagnant entries at some timestamp without other checks
/// This function is intended just to clean leftover entries when the real
/// stagnant checks are disabled
pub(super) fn prune_only_stagnant<'a, B: 'a + Backend>(
backend: &'a B,
up_to: Timestamp,
max_elements: usize,
) -> Result<OverlayedBackend<'a, B>, Error> {
let stagnant_up_to = backend.load_stagnant_at_up_to(up_to, max_elements)?;
let mut backend = OverlayedBackend::new(backend);
let (min_ts, max_ts) = match stagnant_up_to.len() {
0 => (0 as Timestamp, 0 as Timestamp),
1 => (stagnant_up_to[0].0, stagnant_up_to[0].0),
n => (stagnant_up_to[0].0, stagnant_up_to[n - 1].0),
};
gum::debug!(
target: LOG_TARGET,
?up_to,
?min_ts,
?max_ts,
"Prepared {} stagnant entries for pruning",
stagnant_up_to.len()
);
for (timestamp, _) in stagnant_up_to {
backend.delete_stagnant_at(timestamp);
}
Ok(backend)
}
/// Revert the tree to the block relative to `hash`.
///
/// This accepts a fresh backend and returns an overlay on top of it representing
/// all changes made.
pub(super) fn revert_to<'a, B: Backend + 'a>(
backend: &'a B,
hash: Hash,
) -> Result<OverlayedBackend<'a, B>, Error> {
let first_number = backend.load_first_block_number()?.unwrap_or_default();
let mut backend = OverlayedBackend::new(backend);
let mut entry = match backend.load_block_entry(&hash)? {
Some(entry) => entry,
None => {
// May be a revert to the last finalized block. If this is the case,
// then revert to this block should be handled specially since no
// information about finalized blocks is persisted within the tree.
//
// We use part of the information contained in the finalized block
// children (that are expected to be in the tree) to construct a
// dummy block entry for the last finalized block. This will be
// wiped as soon as the next block is finalized.
let blocks = backend.load_blocks_by_number(first_number)?;
let block = blocks
.first()
.and_then(|hash| backend.load_block_entry(hash).ok())
.flatten()
.ok_or_else(|| {
ChainApiError::from(format!(
"Lookup failure for block at height {}",
first_number
))
})?;
// The parent is expected to be the last finalized block.
if block.parent_hash != hash {
return Err(ChainApiError::from("Can't revert below last finalized block").into())
}
// The weight is set to the one of the first child. Even though this is
// not accurate, it does the job. The reason is that the revert point is
// the last finalized block, i.e. this is the best and only choice.
let block_number = first_number.saturating_sub(1);
let viability = ViabilityCriteria {
explicitly_reverted: false,
approval: Approval::Approved,
earliest_unviable_ancestor: None,
};
let entry = BlockEntry {
block_hash: hash,
block_number,
parent_hash: Hash::default(),
children: blocks,
viability,
weight: block.weight,
};
// This becomes the first entry according to the block number.
backend.write_blocks_by_number(block_number, vec![hash]);
entry
},
};
let mut stack: Vec<_> = std::mem::take(&mut entry.children)
.into_iter()
.map(|h| (h, entry.block_number + 1))
.collect();
// Write revert point block entry without the children.
backend.write_block_entry(entry.clone());
let mut viable_leaves = backend.load_leaves()?;
viable_leaves.insert(LeafEntry {
block_hash: hash,
block_number: entry.block_number,
weight: entry.weight,
});
while let Some((hash, number)) = stack.pop() {
let entry = backend.load_block_entry(&hash)?;
backend.delete_block_entry(&hash);
viable_leaves.remove(&hash);
let mut blocks_at_height = backend.load_blocks_by_number(number)?;
blocks_at_height.retain(|h| h != &hash);
backend.write_blocks_by_number(number, blocks_at_height);
stack.extend(entry.into_iter().flat_map(|e| e.children).map(|h| (h, number + 1)));
}
backend.write_leaves(viable_leaves);
Ok(backend)
}