referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Transaction Payment Pallet
//!
//! This pallet provides the basic logic needed to pay the absolute minimum amount needed for a
//! transaction to be included. This includes:
//!   - _base fee_: This is the minimum amount a user pays for a transaction. It is declared
//! 	as a base _weight_ in the runtime and converted to a fee using `WeightToFee`.
//!   - _weight fee_: A fee proportional to amount of weight a transaction consumes.
//!   - _length fee_: A fee proportional to the encoded length of the transaction.
//!   - _tip_: An optional tip. Tip increases the priority of the transaction, giving it a higher
//!     chance to be included by the transaction queue.
//!
//! The base fee and adjusted weight and length fees constitute the _inclusion fee_, which is
//! the minimum fee for a transaction to be included in a block.
//!
//! The formula of final fee:
//!   ```ignore
//!   inclusion_fee = base_fee + length_fee + [targeted_fee_adjustment * weight_fee];
//!   final_fee = inclusion_fee + tip;
//!   ```
//!
//!   - `targeted_fee_adjustment`: This is a multiplier that can tune the final fee based on
//! 	the congestion of the network.
//!
//! Additionally, this pallet allows one to configure:
//!   - The mapping between one unit of weight to one unit of fee via [`Config::WeightToFee`].
//!   - A means of updating the fee for the next block, via defining a multiplier, based on the
//!     final state of the chain at the end of the previous block. This can be configured via
//!     [`Config::FeeMultiplierUpdate`]
//!   - How the fees are paid via [`Config::OnChargeTransaction`].

#![cfg_attr(not(feature = "std"), no_std)]

use codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;

use frame_support::{
	dispatch::{
		DispatchClass, DispatchInfo, DispatchResult, GetDispatchInfo, Pays, PostDispatchInfo,
	},
	pallet_prelude::TransactionSource,
	traits::{Defensive, EstimateCallFee, Get},
	weights::{Weight, WeightToFee},
	RuntimeDebugNoBound,
};
pub use pallet::*;
pub use payment::*;
use sp_runtime::{
	traits::{
		Convert, DispatchInfoOf, Dispatchable, One, PostDispatchInfoOf, SaturatedConversion,
		Saturating, TransactionExtension, Zero,
	},
	transaction_validity::{TransactionPriority, TransactionValidityError, ValidTransaction},
	FixedPointNumber, FixedU128, Perbill, Perquintill, RuntimeDebug,
};
pub use types::{FeeDetails, InclusionFee, RuntimeDispatchInfo};
pub use weights::WeightInfo;

#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;

#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;

mod payment;
mod types;
pub mod weights;

/// Fee multiplier.
pub type Multiplier = FixedU128;

type BalanceOf<T> = <<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::Balance;

/// A struct to update the weight multiplier per block. It implements `Convert<Multiplier,
/// Multiplier>`, meaning that it can convert the previous multiplier to the next one. This should
/// be called on `on_finalize` of a block, prior to potentially cleaning the weight data from the
/// system pallet.
///
/// given:
/// 	s = previous block weight
/// 	s'= ideal block weight
/// 	m = maximum block weight
/// 		diff = (s - s')/m
/// 		v = 0.00001
/// 		t1 = (v * diff)
/// 		t2 = (v * diff)^2 / 2
/// 	then:
/// 	next_multiplier = prev_multiplier * (1 + t1 + t2)
///
/// Where `(s', v)` must be given as the `Get` implementation of the `T` generic type. Moreover, `M`
/// must provide the minimum allowed value for the multiplier. Note that a runtime should ensure
/// with tests that the combination of this `M` and `V` is not such that the multiplier can drop to
/// zero and never recover.
///
/// Note that `s'` is interpreted as a portion in the _normal transaction_ capacity of the block.
/// For example, given `s' == 0.25` and `AvailableBlockRatio = 0.75`, then the target fullness is
/// _0.25 of the normal capacity_ and _0.1875 of the entire block_.
///
/// Since block weight is multi-dimension, we use the scarcer resource, referred as limiting
/// dimension, for calculation of fees. We determine the limiting dimension by comparing the
/// dimensions using the ratio of `dimension_value / max_dimension_value` and selecting the largest
/// ratio. For instance, if a block is 30% full based on `ref_time` and 25% full based on
/// `proof_size`, we identify `ref_time` as the limiting dimension, indicating that the block is 30%
/// full.
///
/// This implementation implies the bound:
/// - `v ≤ p / k * (s − s')`
/// - or, solving for `p`: `p >= v * k * (s - s')`
///
/// where `p` is the amount of change over `k` blocks.
///
/// Hence:
/// - in a fully congested chain: `p >= v * k * (1 - s')`.
/// - in an empty chain: `p >= v * k * (-s')`.
///
/// For example, when all blocks are full and there are 28800 blocks per day (default in
/// `substrate-node`) and v == 0.00001, s' == 0.1875, we'd have:
///
/// p >= 0.00001 * 28800 * 0.8125
/// p >= 0.234
///
/// Meaning that fees can change by around ~23% per day, given extreme congestion.
///
/// More info can be found at:
/// <https://research.web3.foundation/en/latest/polkadot/overview/2-token-economics.html>
pub struct TargetedFeeAdjustment<T, S, V, M, X>(core::marker::PhantomData<(T, S, V, M, X)>);

/// Something that can convert the current multiplier to the next one.
pub trait MultiplierUpdate: Convert<Multiplier, Multiplier> {
	/// Minimum multiplier. Any outcome of the `convert` function should be at least this.
	fn min() -> Multiplier;
	/// Maximum multiplier. Any outcome of the `convert` function should be less or equal this.
	fn max() -> Multiplier;
	/// Target block saturation level
	fn target() -> Perquintill;
	/// Variability factor
	fn variability() -> Multiplier;
}

impl MultiplierUpdate for () {
	fn min() -> Multiplier {
		Default::default()
	}
	fn max() -> Multiplier {
		<Multiplier as sp_runtime::traits::Bounded>::max_value()
	}
	fn target() -> Perquintill {
		Default::default()
	}
	fn variability() -> Multiplier {
		Default::default()
	}
}

impl<T, S, V, M, X> MultiplierUpdate for TargetedFeeAdjustment<T, S, V, M, X>
where
	T: frame_system::Config,
	S: Get<Perquintill>,
	V: Get<Multiplier>,
	M: Get<Multiplier>,
	X: Get<Multiplier>,
{
	fn min() -> Multiplier {
		M::get()
	}
	fn max() -> Multiplier {
		X::get()
	}
	fn target() -> Perquintill {
		S::get()
	}
	fn variability() -> Multiplier {
		V::get()
	}
}

impl<T, S, V, M, X> Convert<Multiplier, Multiplier> for TargetedFeeAdjustment<T, S, V, M, X>
where
	T: frame_system::Config,
	S: Get<Perquintill>,
	V: Get<Multiplier>,
	M: Get<Multiplier>,
	X: Get<Multiplier>,
{
	fn convert(previous: Multiplier) -> Multiplier {
		// Defensive only. The multiplier in storage should always be at most positive. Nonetheless
		// we recover here in case of errors, because any value below this would be stale and can
		// never change.
		let min_multiplier = M::get();
		let max_multiplier = X::get();
		let previous = previous.max(min_multiplier);

		let weights = T::BlockWeights::get();
		// the computed ratio is only among the normal class.
		let normal_max_weight =
			weights.get(DispatchClass::Normal).max_total.unwrap_or(weights.max_block);
		let current_block_weight = frame_system::Pallet::<T>::block_weight();
		let normal_block_weight =
			current_block_weight.get(DispatchClass::Normal).min(normal_max_weight);

		// Normalize dimensions so they can be compared. Ensure (defensive) max weight is non-zero.
		let normalized_ref_time = Perbill::from_rational(
			normal_block_weight.ref_time(),
			normal_max_weight.ref_time().max(1),
		);
		let normalized_proof_size = Perbill::from_rational(
			normal_block_weight.proof_size(),
			normal_max_weight.proof_size().max(1),
		);

		// Pick the limiting dimension. If the proof size is the limiting dimension, then the
		// multiplier is adjusted by the proof size. Otherwise, it is adjusted by the ref time.
		let (normal_limiting_dimension, max_limiting_dimension) =
			if normalized_ref_time < normalized_proof_size {
				(normal_block_weight.proof_size(), normal_max_weight.proof_size())
			} else {
				(normal_block_weight.ref_time(), normal_max_weight.ref_time())
			};

		let target_block_fullness = S::get();
		let adjustment_variable = V::get();

		let target_weight = (target_block_fullness * max_limiting_dimension) as u128;
		let block_weight = normal_limiting_dimension as u128;

		// determines if the first_term is positive
		let positive = block_weight >= target_weight;
		let diff_abs = block_weight.max(target_weight) - block_weight.min(target_weight);

		// defensive only, a test case assures that the maximum weight diff can fit in Multiplier
		// without any saturation.
		let diff = Multiplier::saturating_from_rational(diff_abs, max_limiting_dimension.max(1));
		let diff_squared = diff.saturating_mul(diff);

		let v_squared_2 = adjustment_variable.saturating_mul(adjustment_variable) /
			Multiplier::saturating_from_integer(2);

		let first_term = adjustment_variable.saturating_mul(diff);
		let second_term = v_squared_2.saturating_mul(diff_squared);

		if positive {
			let excess = first_term.saturating_add(second_term).saturating_mul(previous);
			previous.saturating_add(excess).clamp(min_multiplier, max_multiplier)
		} else {
			// Defensive-only: first_term > second_term. Safe subtraction.
			let negative = first_term.saturating_sub(second_term).saturating_mul(previous);
			previous.saturating_sub(negative).clamp(min_multiplier, max_multiplier)
		}
	}
}

/// A struct to make the fee multiplier a constant
pub struct ConstFeeMultiplier<M: Get<Multiplier>>(core::marker::PhantomData<M>);

impl<M: Get<Multiplier>> MultiplierUpdate for ConstFeeMultiplier<M> {
	fn min() -> Multiplier {
		M::get()
	}
	fn max() -> Multiplier {
		M::get()
	}
	fn target() -> Perquintill {
		Default::default()
	}
	fn variability() -> Multiplier {
		Default::default()
	}
}

impl<M> Convert<Multiplier, Multiplier> for ConstFeeMultiplier<M>
where
	M: Get<Multiplier>,
{
	fn convert(_previous: Multiplier) -> Multiplier {
		Self::min()
	}
}

/// Storage releases of the pallet.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug, TypeInfo, MaxEncodedLen)]
pub enum Releases {
	/// Original version of the pallet.
	V1Ancient,
	/// One that bumps the usage to FixedU128 from FixedI128.
	V2,
}

impl Default for Releases {
	fn default() -> Self {
		Releases::V1Ancient
	}
}

/// Default value for NextFeeMultiplier. This is used in genesis and is also used in
/// NextFeeMultiplierOnEmpty() to provide a value when none exists in storage.
const MULTIPLIER_DEFAULT_VALUE: Multiplier = Multiplier::from_u32(1);

#[frame_support::pallet]
pub mod pallet {
	use frame_support::pallet_prelude::*;
	use frame_system::pallet_prelude::*;

	use super::*;

	#[pallet::pallet]
	pub struct Pallet<T>(_);

	pub mod config_preludes {
		use super::*;
		use frame_support::derive_impl;

		/// Default prelude sensible to be used in a testing environment.
		pub struct TestDefaultConfig;

		#[derive_impl(frame_system::config_preludes::TestDefaultConfig, no_aggregated_types)]
		impl frame_system::DefaultConfig for TestDefaultConfig {}

		#[frame_support::register_default_impl(TestDefaultConfig)]
		impl DefaultConfig for TestDefaultConfig {
			#[inject_runtime_type]
			type RuntimeEvent = ();
			type FeeMultiplierUpdate = ();
			type OperationalFeeMultiplier = ();
			type WeightInfo = ();
		}
	}

	#[pallet::config(with_default)]
	pub trait Config: frame_system::Config {
		/// The overarching event type.
		#[pallet::no_default_bounds]
		type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;

		/// Handler for withdrawing, refunding and depositing the transaction fee.
		/// Transaction fees are withdrawn before the transaction is executed.
		/// After the transaction was executed the transaction weight can be
		/// adjusted, depending on the used resources by the transaction. If the
		/// transaction weight is lower than expected, parts of the transaction fee
		/// might be refunded. In the end the fees can be deposited.
		#[pallet::no_default]
		type OnChargeTransaction: OnChargeTransaction<Self>;

		/// Convert a weight value into a deductible fee based on the currency type.
		#[pallet::no_default]
		type WeightToFee: WeightToFee<Balance = BalanceOf<Self>>;

		/// Convert a length value into a deductible fee based on the currency type.
		#[pallet::no_default]
		type LengthToFee: WeightToFee<Balance = BalanceOf<Self>>;

		/// Update the multiplier of the next block, based on the previous block's weight.
		type FeeMultiplierUpdate: MultiplierUpdate;

		/// A fee multiplier for `Operational` extrinsics to compute "virtual tip" to boost their
		/// `priority`
		///
		/// This value is multiplied by the `final_fee` to obtain a "virtual tip" that is later
		/// added to a tip component in regular `priority` calculations.
		/// It means that a `Normal` transaction can front-run a similarly-sized `Operational`
		/// extrinsic (with no tip), by including a tip value greater than the virtual tip.
		///
		/// ```rust,ignore
		/// // For `Normal`
		/// let priority = priority_calc(tip);
		///
		/// // For `Operational`
		/// let virtual_tip = (inclusion_fee + tip) * OperationalFeeMultiplier;
		/// let priority = priority_calc(tip + virtual_tip);
		/// ```
		///
		/// Note that since we use `final_fee` the multiplier applies also to the regular `tip`
		/// sent with the transaction. So, not only does the transaction get a priority bump based
		/// on the `inclusion_fee`, but we also amplify the impact of tips applied to `Operational`
		/// transactions.
		#[pallet::constant]
		type OperationalFeeMultiplier: Get<u8>;

		/// The weight information of this pallet.
		type WeightInfo: WeightInfo;
	}

	#[pallet::type_value]
	pub fn NextFeeMultiplierOnEmpty() -> Multiplier {
		MULTIPLIER_DEFAULT_VALUE
	}

	#[pallet::storage]
	#[pallet::whitelist_storage]
	pub type NextFeeMultiplier<T: Config> =
		StorageValue<_, Multiplier, ValueQuery, NextFeeMultiplierOnEmpty>;

	#[pallet::storage]
	pub type StorageVersion<T: Config> = StorageValue<_, Releases, ValueQuery>;

	#[pallet::genesis_config]
	pub struct GenesisConfig<T: Config> {
		pub multiplier: Multiplier,
		#[serde(skip)]
		pub _config: core::marker::PhantomData<T>,
	}

	impl<T: Config> Default for GenesisConfig<T> {
		fn default() -> Self {
			Self { multiplier: MULTIPLIER_DEFAULT_VALUE, _config: Default::default() }
		}
	}

	#[pallet::genesis_build]
	impl<T: Config> BuildGenesisConfig for GenesisConfig<T> {
		fn build(&self) {
			StorageVersion::<T>::put(Releases::V2);
			NextFeeMultiplier::<T>::put(self.multiplier);
		}
	}

	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event<T: Config> {
		/// A transaction fee `actual_fee`, of which `tip` was added to the minimum inclusion fee,
		/// has been paid by `who`.
		TransactionFeePaid { who: T::AccountId, actual_fee: BalanceOf<T>, tip: BalanceOf<T> },
	}

	#[pallet::hooks]
	impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
		fn on_finalize(_: frame_system::pallet_prelude::BlockNumberFor<T>) {
			NextFeeMultiplier::<T>::mutate(|fm| {
				*fm = T::FeeMultiplierUpdate::convert(*fm);
			});
		}

		#[cfg(feature = "std")]
		fn integrity_test() {
			// given weight == u64, we build multipliers from `diff` of two weight values, which can
			// at most be maximum block weight. Make sure that this can fit in a multiplier without
			// loss.
			assert!(
				<Multiplier as sp_runtime::traits::Bounded>::max_value() >=
					Multiplier::checked_from_integer::<u128>(
						T::BlockWeights::get().max_block.ref_time().try_into().unwrap()
					)
					.unwrap(),
			);

			let target = T::FeeMultiplierUpdate::target() *
				T::BlockWeights::get().get(DispatchClass::Normal).max_total.expect(
					"Setting `max_total` for `Normal` dispatch class is not compatible with \
					`transaction-payment` pallet.",
				);
			// add 1 percent;
			let addition = target / 100;
			if addition == Weight::zero() {
				// this is most likely because in a test setup we set everything to ()
				// or to `ConstFeeMultiplier`.
				return
			}

			// This is the minimum value of the multiplier. Make sure that if we collapse to this
			// value, we can recover with a reasonable amount of traffic. For this test we assert
			// that if we collapse to minimum, the trend will be positive with a weight value which
			// is 1% more than the target.
			let min_value = T::FeeMultiplierUpdate::min();
			let target = target + addition;

			frame_system::Pallet::<T>::set_block_consumed_resources(target, 0);
			let next = T::FeeMultiplierUpdate::convert(min_value);
			assert!(
				next > min_value,
				"The minimum bound of the multiplier is too low. When \
				block saturation is more than target by 1% and multiplier is minimal then \
				the multiplier doesn't increase."
			);
		}
	}
}

impl<T: Config> Pallet<T> {
	/// Public function to access the next fee multiplier.
	pub fn next_fee_multiplier() -> Multiplier {
		NextFeeMultiplier::<T>::get()
	}

	/// Query the data that we know about the fee of a given `call`.
	///
	/// This pallet is not and cannot be aware of the internals of a signed extension, for example
	/// a tip. It only interprets the extrinsic as some encoded value and accounts for its weight
	/// and length, the runtime's extrinsic base weight, and the current fee multiplier.
	///
	/// All dispatchables must be annotated with weight and will have some fee info. This function
	/// always returns.
	pub fn query_info<Extrinsic: sp_runtime::traits::ExtrinsicLike + GetDispatchInfo>(
		unchecked_extrinsic: Extrinsic,
		len: u32,
	) -> RuntimeDispatchInfo<BalanceOf<T>>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo>,
	{
		// NOTE: we can actually make it understand `ChargeTransactionPayment`, but would be some
		// hassle for sure. We have to make it aware of the index of `ChargeTransactionPayment` in
		// `Extra`. Alternatively, we could actually execute the tx's per-dispatch and record the
		// balance of the sender before and after the pipeline.. but this is way too much hassle for
		// a very very little potential gain in the future.
		let dispatch_info = <Extrinsic as GetDispatchInfo>::get_dispatch_info(&unchecked_extrinsic);

		let partial_fee = if unchecked_extrinsic.is_bare() {
			// Bare extrinsics have no partial fee.
			0u32.into()
		} else {
			Self::compute_fee(len, &dispatch_info, 0u32.into())
		};

		let DispatchInfo { class, .. } = dispatch_info;

		RuntimeDispatchInfo { weight: dispatch_info.total_weight(), class, partial_fee }
	}

	/// Query the detailed fee of a given `call`.
	pub fn query_fee_details<Extrinsic: sp_runtime::traits::ExtrinsicLike + GetDispatchInfo>(
		unchecked_extrinsic: Extrinsic,
		len: u32,
	) -> FeeDetails<BalanceOf<T>>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo>,
	{
		let dispatch_info = <Extrinsic as GetDispatchInfo>::get_dispatch_info(&unchecked_extrinsic);

		let tip = 0u32.into();

		if unchecked_extrinsic.is_bare() {
			// Bare extrinsics have no inclusion fee.
			FeeDetails { inclusion_fee: None, tip }
		} else {
			Self::compute_fee_details(len, &dispatch_info, tip)
		}
	}

	/// Query information of a dispatch class, weight, and fee of a given encoded `Call`.
	pub fn query_call_info(call: T::RuntimeCall, len: u32) -> RuntimeDispatchInfo<BalanceOf<T>>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo> + GetDispatchInfo,
	{
		let dispatch_info = <T::RuntimeCall as GetDispatchInfo>::get_dispatch_info(&call);
		let DispatchInfo { class, .. } = dispatch_info;

		RuntimeDispatchInfo {
			weight: dispatch_info.total_weight(),
			class,
			partial_fee: Self::compute_fee(len, &dispatch_info, 0u32.into()),
		}
	}

	/// Query fee details of a given encoded `Call`.
	pub fn query_call_fee_details(call: T::RuntimeCall, len: u32) -> FeeDetails<BalanceOf<T>>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo> + GetDispatchInfo,
	{
		let dispatch_info = <T::RuntimeCall as GetDispatchInfo>::get_dispatch_info(&call);
		let tip = 0u32.into();

		Self::compute_fee_details(len, &dispatch_info, tip)
	}

	/// Compute the final fee value for a particular transaction.
	pub fn compute_fee(
		len: u32,
		info: &DispatchInfoOf<T::RuntimeCall>,
		tip: BalanceOf<T>,
	) -> BalanceOf<T>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo>,
	{
		Self::compute_fee_details(len, info, tip).final_fee()
	}

	/// Compute the fee details for a particular transaction.
	pub fn compute_fee_details(
		len: u32,
		info: &DispatchInfoOf<T::RuntimeCall>,
		tip: BalanceOf<T>,
	) -> FeeDetails<BalanceOf<T>>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo>,
	{
		Self::compute_fee_raw(len, info.total_weight(), tip, info.pays_fee, info.class)
	}

	/// Compute the actual post dispatch fee for a particular transaction.
	///
	/// Identical to `compute_fee` with the only difference that the post dispatch corrected
	/// weight is used for the weight fee calculation.
	pub fn compute_actual_fee(
		len: u32,
		info: &DispatchInfoOf<T::RuntimeCall>,
		post_info: &PostDispatchInfoOf<T::RuntimeCall>,
		tip: BalanceOf<T>,
	) -> BalanceOf<T>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
	{
		Self::compute_actual_fee_details(len, info, post_info, tip).final_fee()
	}

	/// Compute the actual post dispatch fee details for a particular transaction.
	pub fn compute_actual_fee_details(
		len: u32,
		info: &DispatchInfoOf<T::RuntimeCall>,
		post_info: &PostDispatchInfoOf<T::RuntimeCall>,
		tip: BalanceOf<T>,
	) -> FeeDetails<BalanceOf<T>>
	where
		T::RuntimeCall: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
	{
		Self::compute_fee_raw(
			len,
			post_info.calc_actual_weight(info),
			tip,
			post_info.pays_fee(info),
			info.class,
		)
	}

	fn compute_fee_raw(
		len: u32,
		weight: Weight,
		tip: BalanceOf<T>,
		pays_fee: Pays,
		class: DispatchClass,
	) -> FeeDetails<BalanceOf<T>> {
		if pays_fee == Pays::Yes {
			// the adjustable part of the fee.
			let unadjusted_weight_fee = Self::weight_to_fee(weight);
			let multiplier = NextFeeMultiplier::<T>::get();
			// final adjusted weight fee.
			let adjusted_weight_fee = multiplier.saturating_mul_int(unadjusted_weight_fee);

			// length fee. this is adjusted via `LengthToFee`.
			let len_fee = Self::length_to_fee(len);

			let base_fee = Self::weight_to_fee(T::BlockWeights::get().get(class).base_extrinsic);
			FeeDetails {
				inclusion_fee: Some(InclusionFee { base_fee, len_fee, adjusted_weight_fee }),
				tip,
			}
		} else {
			FeeDetails { inclusion_fee: None, tip }
		}
	}

	/// Compute the length portion of a fee by invoking the configured `LengthToFee` impl.
	pub fn length_to_fee(length: u32) -> BalanceOf<T> {
		T::LengthToFee::weight_to_fee(&Weight::from_parts(length as u64, 0))
	}

	/// Compute the unadjusted portion of the weight fee by invoking the configured `WeightToFee`
	/// impl. Note that the input `weight` is capped by the maximum block weight before computation.
	pub fn weight_to_fee(weight: Weight) -> BalanceOf<T> {
		// cap the weight to the maximum defined in runtime, otherwise it will be the
		// `Bounded` maximum of its data type, which is not desired.
		let capped_weight = weight.min(T::BlockWeights::get().max_block);
		T::WeightToFee::weight_to_fee(&capped_weight)
	}

	/// Deposit the [`Event::TransactionFeePaid`] event.
	pub fn deposit_fee_paid_event(who: T::AccountId, actual_fee: BalanceOf<T>, tip: BalanceOf<T>) {
		Self::deposit_event(Event::TransactionFeePaid { who, actual_fee, tip });
	}
}

impl<T> Convert<Weight, BalanceOf<T>> for Pallet<T>
where
	T: Config,
{
	/// Compute the fee for the specified weight.
	///
	/// This fee is already adjusted by the per block fee adjustment factor and is therefore the
	/// share that the weight contributes to the overall fee of a transaction. It is mainly
	/// for informational purposes and not used in the actual fee calculation.
	fn convert(weight: Weight) -> BalanceOf<T> {
		NextFeeMultiplier::<T>::get().saturating_mul_int(Self::weight_to_fee(weight))
	}
}

/// Require the transactor pay for themselves and maybe include a tip to gain additional priority
/// in the queue.
///
/// # Transaction Validity
///
/// This extension sets the `priority` field of `TransactionValidity` depending on the amount
/// of tip being paid per weight unit.
///
/// Operational transactions will receive an additional priority bump, so that they are normally
/// considered before regular transactions.
#[derive(Encode, Decode, Clone, Eq, PartialEq, TypeInfo)]
#[scale_info(skip_type_params(T))]
pub struct ChargeTransactionPayment<T: Config>(#[codec(compact)] BalanceOf<T>);

impl<T: Config> ChargeTransactionPayment<T>
where
	T::RuntimeCall: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
	BalanceOf<T>: Send + Sync,
{
	/// utility constructor. Used only in client/factory code.
	pub fn from(fee: BalanceOf<T>) -> Self {
		Self(fee)
	}

	/// Returns the tip as being chosen by the transaction sender.
	pub fn tip(&self) -> BalanceOf<T> {
		self.0
	}

	fn withdraw_fee(
		&self,
		who: &T::AccountId,
		call: &T::RuntimeCall,
		info: &DispatchInfoOf<T::RuntimeCall>,
		fee: BalanceOf<T>,
	) -> Result<
		(
			BalanceOf<T>,
			<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::LiquidityInfo,
		),
		TransactionValidityError,
	> {
		let tip = self.0;

		<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::withdraw_fee(
			who, call, info, fee, tip,
		)
		.map(|i| (fee, i))
	}

	fn can_withdraw_fee(
		&self,
		who: &T::AccountId,
		call: &T::RuntimeCall,
		info: &DispatchInfoOf<T::RuntimeCall>,
		len: usize,
	) -> Result<BalanceOf<T>, TransactionValidityError> {
		let tip = self.0;
		let fee = Pallet::<T>::compute_fee(len as u32, info, tip);

		<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::can_withdraw_fee(
			who, call, info, fee, tip,
		)?;
		Ok(fee)
	}

	/// Get an appropriate priority for a transaction with the given `DispatchInfo`, encoded length
	/// and user-included tip.
	///
	/// The priority is based on the amount of `tip` the user is willing to pay per unit of either
	/// `weight` or `length`, depending which one is more limiting. For `Operational` extrinsics
	/// we add a "virtual tip" to the calculations.
	///
	/// The formula should simply be `tip / bounded_{weight|length}`, but since we are using
	/// integer division, we have no guarantees it's going to give results in any reasonable
	/// range (might simply end up being zero). Hence we use a scaling factor:
	/// `tip * (max_block_{weight|length} / bounded_{weight|length})`, since given current
	/// state of-the-art blockchains, number of per-block transactions is expected to be in a
	/// range reasonable enough to not saturate the `Balance` type while multiplying by the tip.
	pub fn get_priority(
		info: &DispatchInfoOf<T::RuntimeCall>,
		len: usize,
		tip: BalanceOf<T>,
		final_fee: BalanceOf<T>,
	) -> TransactionPriority {
		// Calculate how many such extrinsics we could fit into an empty block and take the
		// limiting factor.
		let max_block_weight = T::BlockWeights::get().max_block;
		let max_block_length = *T::BlockLength::get().max.get(info.class) as u64;

		// bounded_weight is used as a divisor later so we keep it non-zero.
		let bounded_weight =
			info.total_weight().max(Weight::from_parts(1, 1)).min(max_block_weight);
		let bounded_length = (len as u64).clamp(1, max_block_length);

		// returns the scarce resource, i.e. the one that is limiting the number of transactions.
		let max_tx_per_block_weight = max_block_weight
			.checked_div_per_component(&bounded_weight)
			.defensive_proof("bounded_weight is non-zero; qed")
			.unwrap_or(1);
		let max_tx_per_block_length = max_block_length / bounded_length;
		// Given our current knowledge this value is going to be in a reasonable range - i.e.
		// less than 10^9 (2^30), so multiplying by the `tip` value is unlikely to overflow the
		// balance type. We still use saturating ops obviously, but the point is to end up with some
		// `priority` distribution instead of having all transactions saturate the priority.
		let max_tx_per_block = max_tx_per_block_length
			.min(max_tx_per_block_weight)
			.saturated_into::<BalanceOf<T>>();
		let max_reward = |val: BalanceOf<T>| val.saturating_mul(max_tx_per_block);

		// To distribute no-tip transactions a little bit, we increase the tip value by one.
		// This means that given two transactions without a tip, smaller one will be preferred.
		let tip = tip.saturating_add(One::one());
		let scaled_tip = max_reward(tip);

		match info.class {
			DispatchClass::Normal => {
				// For normal class we simply take the `tip_per_weight`.
				scaled_tip
			},
			DispatchClass::Mandatory => {
				// Mandatory extrinsics should be prohibited (e.g. by the [`CheckWeight`]
				// extensions), but just to be safe let's return the same priority as `Normal` here.
				scaled_tip
			},
			DispatchClass::Operational => {
				// A "virtual tip" value added to an `Operational` extrinsic.
				// This value should be kept high enough to allow `Operational` extrinsics
				// to get in even during congestion period, but at the same time low
				// enough to prevent a possible spam attack by sending invalid operational
				// extrinsics which push away regular transactions from the pool.
				let fee_multiplier = T::OperationalFeeMultiplier::get().saturated_into();
				let virtual_tip = final_fee.saturating_mul(fee_multiplier);
				let scaled_virtual_tip = max_reward(virtual_tip);

				scaled_tip.saturating_add(scaled_virtual_tip)
			},
		}
		.saturated_into::<TransactionPriority>()
	}
}

impl<T: Config> core::fmt::Debug for ChargeTransactionPayment<T> {
	#[cfg(feature = "std")]
	fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
		write!(f, "ChargeTransactionPayment<{:?}>", self.0)
	}
	#[cfg(not(feature = "std"))]
	fn fmt(&self, _: &mut core::fmt::Formatter) -> core::fmt::Result {
		Ok(())
	}
}

/// The info passed between the validate and prepare steps for the `ChargeAssetTxPayment` extension.
#[derive(RuntimeDebugNoBound)]
pub enum Val<T: Config> {
	Charge {
		tip: BalanceOf<T>,
		// who paid the fee
		who: T::AccountId,
		// transaction fee
		fee: BalanceOf<T>,
	},
	NoCharge,
}

/// The info passed between the prepare and post-dispatch steps for the `ChargeAssetTxPayment`
/// extension.
pub enum Pre<T: Config> {
	Charge {
		tip: BalanceOf<T>,
		// who paid the fee
		who: T::AccountId,
		// imbalance resulting from withdrawing the fee
		imbalance: <<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::LiquidityInfo,
	},
	NoCharge {
		// weight initially estimated by the extension, to be refunded
		refund: Weight,
	},
}

impl<T: Config> core::fmt::Debug for Pre<T> {
	#[cfg(feature = "std")]
	fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
		match self {
			Pre::Charge { tip, who, imbalance: _ } => {
				write!(f, "Charge {{ tip: {:?}, who: {:?}, imbalance: <stripped> }}", tip, who)
			},
			Pre::NoCharge { refund } => write!(f, "NoCharge {{ refund: {:?} }}", refund),
		}
	}

	#[cfg(not(feature = "std"))]
	fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
		f.write_str("<wasm:stripped>")
	}
}

impl<T: Config> TransactionExtension<T::RuntimeCall> for ChargeTransactionPayment<T>
where
	T::RuntimeCall: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
	const IDENTIFIER: &'static str = "ChargeTransactionPayment";
	type Implicit = ();
	type Val = Val<T>;
	type Pre = Pre<T>;

	fn weight(&self, _: &T::RuntimeCall) -> Weight {
		T::WeightInfo::charge_transaction_payment()
	}

	fn validate(
		&self,
		origin: <T::RuntimeCall as Dispatchable>::RuntimeOrigin,
		call: &T::RuntimeCall,
		info: &DispatchInfoOf<T::RuntimeCall>,
		len: usize,
		_: (),
		_implication: &impl Encode,
		_source: TransactionSource,
	) -> Result<
		(ValidTransaction, Self::Val, <T::RuntimeCall as Dispatchable>::RuntimeOrigin),
		TransactionValidityError,
	> {
		let Ok(who) = frame_system::ensure_signed(origin.clone()) else {
			return Ok((ValidTransaction::default(), Val::NoCharge, origin));
		};
		let final_fee = self.can_withdraw_fee(&who, call, info, len)?;
		let tip = self.0;
		Ok((
			ValidTransaction {
				priority: Self::get_priority(info, len, tip, final_fee),
				..Default::default()
			},
			Val::Charge { tip: self.0, who, fee: final_fee },
			origin,
		))
	}

	fn prepare(
		self,
		val: Self::Val,
		_origin: &<T::RuntimeCall as Dispatchable>::RuntimeOrigin,
		call: &T::RuntimeCall,
		info: &DispatchInfoOf<T::RuntimeCall>,
		_len: usize,
	) -> Result<Self::Pre, TransactionValidityError> {
		match val {
			Val::Charge { tip, who, fee } => {
				// Mutating call to `withdraw_fee` to actually charge for the transaction.
				let (_final_fee, imbalance) = self.withdraw_fee(&who, call, info, fee)?;
				Ok(Pre::Charge { tip, who, imbalance })
			},
			Val::NoCharge => Ok(Pre::NoCharge { refund: self.weight(call) }),
		}
	}

	fn post_dispatch_details(
		pre: Self::Pre,
		info: &DispatchInfoOf<T::RuntimeCall>,
		post_info: &PostDispatchInfoOf<T::RuntimeCall>,
		len: usize,
		_result: &DispatchResult,
	) -> Result<Weight, TransactionValidityError> {
		let (tip, who, imbalance) = match pre {
			Pre::Charge { tip, who, imbalance } => (tip, who, imbalance),
			Pre::NoCharge { refund } => {
				// No-op: Refund everything
				return Ok(refund)
			},
		};
		let actual_fee = Pallet::<T>::compute_actual_fee(len as u32, info, &post_info, tip);
		T::OnChargeTransaction::correct_and_deposit_fee(
			&who, info, &post_info, actual_fee, tip, imbalance,
		)?;
		Pallet::<T>::deposit_event(Event::<T>::TransactionFeePaid { who, actual_fee, tip });
		Ok(Weight::zero())
	}
}

impl<T: Config, AnyCall: GetDispatchInfo + Encode> EstimateCallFee<AnyCall, BalanceOf<T>>
	for Pallet<T>
where
	T::RuntimeCall: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
	fn estimate_call_fee(call: &AnyCall, post_info: PostDispatchInfo) -> BalanceOf<T> {
		let len = call.encoded_size() as u32;
		let info = call.get_dispatch_info();
		Self::compute_actual_fee(len, &info, &post_info, Zero::zero())
	}
}