1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! BEEFY + MMR utilities.
//!
//! While BEEFY can be used completely independently as an additional consensus gadget,
//! it is designed around a main use case of bridging standalone networks together.
//! For that use case it's common to use some aggregated data structure (like MMR) to be
//! used in conjunction with BEEFY, to be able to efficiently prove any past blockchain data.
//!
//! This module contains primitives used by Polkadot implementation of the BEEFY+MMR bridge,
//! but we imagine they will be useful for other chains that either want to bridge with Polkadot
//! or are completely standalone, but heavily inspired by Polkadot.

use crate::{ecdsa_crypto::AuthorityId, ConsensusLog, MmrRootHash, BEEFY_ENGINE_ID};
use alloc::vec::Vec;
use codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;
use sp_runtime::{
	generic::OpaqueDigestItemId,
	traits::{Block, Header},
};

/// A provider for extra data that gets added to the Mmr leaf
pub trait BeefyDataProvider<ExtraData> {
	/// Return a vector of bytes, ideally should be a merkle root hash
	fn extra_data() -> ExtraData;
}

/// A default implementation for runtimes.
impl BeefyDataProvider<Vec<u8>> for () {
	fn extra_data() -> Vec<u8> {
		Vec::new()
	}
}

/// A standard leaf that gets added every block to the MMR constructed by Substrate's `pallet_mmr`.
#[derive(Debug, PartialEq, Eq, Clone, Encode, Decode, TypeInfo)]
pub struct MmrLeaf<BlockNumber, Hash, MerkleRoot, ExtraData> {
	/// Version of the leaf format.
	///
	/// Can be used to enable future format migrations and compatibility.
	/// See [`MmrLeafVersion`] documentation for details.
	pub version: MmrLeafVersion,
	/// Current block parent number and hash.
	pub parent_number_and_hash: (BlockNumber, Hash),
	/// A merkle root of the next BEEFY authority set.
	pub beefy_next_authority_set: BeefyNextAuthoritySet<MerkleRoot>,
	/// Arbitrary extra leaf data to be used by downstream pallets to include custom data in the
	/// [`MmrLeaf`]
	pub leaf_extra: ExtraData,
}

/// An MMR leaf versioning scheme.
///
/// Version is a single byte that consists of two components:
/// - `major` - 3 bits
/// - `minor` - 5 bits
///
/// Any change in encoding that adds new items to the structure is considered non-breaking, hence
/// only requires an update of `minor` version. Any backward incompatible change (i.e. decoding to a
/// previous leaf format fails) should be indicated with `major` version bump.
///
/// Given that adding new struct elements in SCALE is backward compatible (i.e. old format can be
/// still decoded, the new fields will simply be ignored). We expect the major version to be bumped
/// very rarely (hopefully never).
#[derive(Debug, Default, PartialEq, Eq, Clone, Encode, Decode, TypeInfo)]
pub struct MmrLeafVersion(u8);
impl MmrLeafVersion {
	/// Create new version object from `major` and `minor` components.
	///
	/// Panics if any of the component occupies more than 4 bits.
	pub fn new(major: u8, minor: u8) -> Self {
		if major > 0b111 || minor > 0b11111 {
			panic!("Version components are too big.");
		}
		let version = (major << 5) + minor;
		Self(version)
	}

	/// Split the version into `major` and `minor` sub-components.
	pub fn split(&self) -> (u8, u8) {
		let major = self.0 >> 5;
		let minor = self.0 & 0b11111;
		(major, minor)
	}
}

/// Details of a BEEFY authority set.
#[derive(Debug, Default, PartialEq, Eq, Clone, Encode, Decode, TypeInfo, MaxEncodedLen)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct BeefyAuthoritySet<AuthoritySetCommitment> {
	/// Id of the set.
	///
	/// Id is required to correlate BEEFY signed commitments with the validator set.
	/// Light Client can easily verify that the commitment witness it is getting is
	/// produced by the latest validator set.
	pub id: crate::ValidatorSetId,
	/// Number of validators in the set.
	///
	/// Some BEEFY Light Clients may use an interactive protocol to verify only a subset
	/// of signatures. We put set length here, so that these clients can verify the minimal
	/// number of required signatures.
	pub len: u32,

	/// Commitment(s) to BEEFY AuthorityIds.
	///
	/// This is used by Light Clients to confirm that the commitments are signed by the correct
	/// validator set. Light Clients using interactive protocol, might verify only subset of
	/// signatures, hence don't require the full list here (will receive inclusion proofs).
	///
	/// This could be Merkle Root Hash built from BEEFY ECDSA public keys and/or
	/// polynomial commitment to the polynomial interpolating BLS public keys
	/// which is used by APK proof based light clients to verify the validity
	/// of aggregated BLS keys using APK proofs.
	/// Multiple commitments can be tupled together.
	pub keyset_commitment: AuthoritySetCommitment,
}

/// Details of the next BEEFY authority set.
pub type BeefyNextAuthoritySet<MerkleRoot> = BeefyAuthoritySet<MerkleRoot>;

/// Extract the MMR root hash from a digest in the given header, if it exists.
pub fn find_mmr_root_digest<B: Block>(header: &B::Header) -> Option<MmrRootHash> {
	let id = OpaqueDigestItemId::Consensus(&BEEFY_ENGINE_ID);

	let filter = |log: ConsensusLog<AuthorityId>| match log {
		ConsensusLog::MmrRoot(root) => Some(root),
		_ => None,
	};
	header.digest().convert_first(|l| l.try_to(id).and_then(filter))
}

#[cfg(feature = "std")]
pub use mmr_root_provider::MmrRootProvider;
#[cfg(feature = "std")]
mod mmr_root_provider {
	use super::*;
	use crate::{known_payloads, payload::PayloadProvider, Payload};
	use alloc::sync::Arc;
	use core::marker::PhantomData;
	use sp_api::ProvideRuntimeApi;
	use sp_mmr_primitives::MmrApi;
	use sp_runtime::traits::NumberFor;

	/// A [`crate::Payload`] provider where payload is Merkle Mountain Range root hash.
	///
	/// Encoded payload contains a [`crate::MmrRootHash`] type (i.e. 32-bytes hash).
	pub struct MmrRootProvider<B, R> {
		runtime: Arc<R>,
		_phantom: PhantomData<B>,
	}

	impl<B, R> Clone for MmrRootProvider<B, R> {
		fn clone(&self) -> Self {
			Self { runtime: self.runtime.clone(), _phantom: PhantomData }
		}
	}

	impl<B, R> MmrRootProvider<B, R>
	where
		B: Block,
		R: ProvideRuntimeApi<B>,
		R::Api: MmrApi<B, MmrRootHash, NumberFor<B>>,
	{
		/// Create new BEEFY Payload provider with MMR Root as payload.
		pub fn new(runtime: Arc<R>) -> Self {
			Self { runtime, _phantom: PhantomData }
		}

		/// Simple wrapper that gets MMR root from header digests or from client state.
		fn mmr_root_from_digest_or_runtime(&self, header: &B::Header) -> Option<MmrRootHash> {
			find_mmr_root_digest::<B>(header).or_else(|| {
				self.runtime.runtime_api().mmr_root(header.hash()).ok().and_then(|r| r.ok())
			})
		}
	}

	impl<B: Block, R> PayloadProvider<B> for MmrRootProvider<B, R>
	where
		B: Block,
		R: ProvideRuntimeApi<B>,
		R::Api: MmrApi<B, MmrRootHash, NumberFor<B>>,
	{
		fn payload(&self, header: &B::Header) -> Option<Payload> {
			self.mmr_root_from_digest_or_runtime(header).map(|mmr_root| {
				Payload::from_single_entry(known_payloads::MMR_ROOT_ID, mmr_root.encode())
			})
		}
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::H256;
	use sp_runtime::{traits::BlakeTwo256, Digest, DigestItem, OpaqueExtrinsic};

	#[test]
	fn should_construct_version_correctly() {
		let tests = vec![(0, 0, 0b00000000), (7, 2, 0b11100010), (7, 31, 0b11111111)];

		for (major, minor, version) in tests {
			let v = MmrLeafVersion::new(major, minor);
			assert_eq!(v.encode(), vec![version], "Encoding does not match.");
			assert_eq!(v.split(), (major, minor));
		}
	}

	#[test]
	#[should_panic]
	fn should_panic_if_major_too_large() {
		MmrLeafVersion::new(8, 0);
	}

	#[test]
	#[should_panic]
	fn should_panic_if_minor_too_large() {
		MmrLeafVersion::new(0, 32);
	}

	#[test]
	fn extract_mmr_root_digest() {
		type Header = sp_runtime::generic::Header<u64, BlakeTwo256>;
		type Block = sp_runtime::generic::Block<Header, OpaqueExtrinsic>;
		let mut header = Header::new(
			1u64,
			Default::default(),
			Default::default(),
			Default::default(),
			Digest::default(),
		);

		// verify empty digest shows nothing
		assert!(find_mmr_root_digest::<Block>(&header).is_none());

		let mmr_root_hash = H256::random();
		header.digest_mut().push(DigestItem::Consensus(
			BEEFY_ENGINE_ID,
			ConsensusLog::<AuthorityId>::MmrRoot(mmr_root_hash).encode(),
		));

		// verify validator set is correctly extracted from digest
		let extracted = find_mmr_root_digest::<Block>(&header);
		assert_eq!(extracted, Some(mmr_root_hash));
	}
}