referrerpolicy=no-referrer-when-downgrade

pallet_revive/pure_precompiles/
modexp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the Liense.
use super::Precompile;
use crate::{Config, ExecReturnValue, GasMeter, RuntimeCosts};
use alloc::{vec, vec::Vec};
use core::cmp::max;
use num_bigint::BigUint;
use num_integer::Integer;
use num_traits::{One, Zero};
use pallet_revive_uapi::ReturnFlags;

/// The Modexp precompile.
/// ModExp expects the following as inputs:
/// 1) 32 bytes expressing the length of base
/// 2) 32 bytes expressing the length of exponent
/// 3) 32 bytes expressing the length of modulus
/// 4) base, size as described above
/// 5) exponent, size as described above
/// 6) modulus, size as described above
///
/// # Note
///
/// input sizes are bound to 1024 bytes, with the expectation
/// that gas limits would be applied before actual computation.
/// maximum stack size will also prevent abuse.
/// see <https://eips.ethereum.org/EIPS/eip-198>
pub struct Modexp;

/// See EIP-2565
const MIN_GAS_COST: u64 = 200;

// Calculate gas cost according to EIP 2565:
// https://eips.ethereum.org/EIPS/eip-2565
fn calculate_gas_cost(
	base_length: u64,
	mod_length: u64,
	exponent: &BigUint,
	exponent_bytes: &[u8],
	mod_is_even: bool,
) -> u64 {
	fn calculate_multiplication_complexity(base_length: u64, mod_length: u64) -> u64 {
		let max_length = max(base_length, mod_length);
		let mut words = max_length / 8;
		if max_length % 8 > 0 {
			words += 1;
		}

		// Note: can't overflow because we take words to be some u64 value / 8, which is
		// necessarily less than sqrt(u64::MAX).
		// Additionally, both base_length and mod_length are bounded to 1024, so this has
		// an upper bound of roughly (1024 / 8) squared
		words * words
	}

	fn calculate_iteration_count(exponent: &BigUint, exponent_bytes: &[u8]) -> u64 {
		let mut iteration_count: u64 = 0;
		let exp_length = exponent_bytes.len() as u64;

		if exp_length <= 32 && exponent.is_zero() {
			iteration_count = 0;
		} else if exp_length <= 32 {
			iteration_count = exponent.bits() - 1;
		} else if exp_length > 32 {
			// from the EIP spec:
			// (8 * (exp_length - 32)) + ((exponent & (2**256 - 1)).bit_length() - 1)
			//
			// Notes:
			// * exp_length is bounded to 1024 and is > 32
			// * exponent can be zero, so we subtract 1 after adding the other terms (whose sum must
			//   be > 0)
			// * the addition can't overflow because the terms are both capped at roughly 8 * max
			//   size of exp_length (1024)
			// * the EIP spec is written in python, in which (exponent & (2**256 - 1)) takes the
			//   FIRST 32 bytes. However this `BigUint` `&` operator takes the LAST 32 bytes. We
			//   thus instead take the bytes manually.
			let exponent_head = BigUint::from_bytes_be(&exponent_bytes[..32]);

			iteration_count = (8 * (exp_length - 32)) + exponent_head.bits() - 1;
		}

		max(iteration_count, 1)
	}

	let multiplication_complexity = calculate_multiplication_complexity(base_length, mod_length);
	let iteration_count = calculate_iteration_count(exponent, exponent_bytes);
	max(MIN_GAS_COST, multiplication_complexity * iteration_count / 3)
		.saturating_mul(if mod_is_even { 20 } else { 1 })
}

/// Copy bytes from input to target.
fn read_input(source: &[u8], target: &mut [u8], source_offset: &mut usize) {
	// We move the offset by the len of the target, regardless of what we
	// actually copy.
	let offset = *source_offset;
	*source_offset += target.len();

	// Out of bounds, nothing to copy.
	if source.len() <= offset {
		return;
	}

	// Find len to copy up to target len, but not out of bounds.
	let len = core::cmp::min(target.len(), source.len() - offset);
	target[..len].copy_from_slice(&source[offset..][..len]);
}

impl<T: Config> Precompile<T> for Modexp {
	fn execute(gas_meter: &mut GasMeter<T>, input: &[u8]) -> Result<ExecReturnValue, &'static str> {
		let mut input_offset = 0;

		// Yellowpaper: whenever the input is too short, the missing bytes are
		// considered to be zero.
		let mut base_len_buf = [0u8; 32];
		read_input(input, &mut base_len_buf, &mut input_offset);
		let mut exp_len_buf = [0u8; 32];
		read_input(input, &mut exp_len_buf, &mut input_offset);
		let mut mod_len_buf = [0u8; 32];
		read_input(input, &mut mod_len_buf, &mut input_offset);

		// reasonable assumption: this must fit within the Ethereum EVM's max stack size
		let max_size_big = BigUint::from(1024u32);

		let base_len_big = BigUint::from_bytes_be(&base_len_buf);
		if base_len_big > max_size_big {
			return Err("unreasonably large base length");
		}

		let exp_len_big = BigUint::from_bytes_be(&exp_len_buf);
		if exp_len_big > max_size_big {
			return Err("unreasonably large exponent length");
		}

		let mod_len_big = BigUint::from_bytes_be(&mod_len_buf);
		if mod_len_big > max_size_big {
			return Err("unreasonably large modulus length");
		}

		// bounds check handled above
		let base_len: usize = base_len_big.try_into().expect("base_len out of bounds");
		let exp_len: usize = exp_len_big.try_into().expect("exp_len out of bounds");
		let mod_len: usize = mod_len_big.try_into().expect("mod_len out of bounds");

		// if mod_len is 0 output must be empty
		if mod_len == 0 {
			return Ok(ExecReturnValue { data: vec![], flags: ReturnFlags::empty() })
		}

		// Gas formula allows arbitrary large exp_len when base and modulus are empty, so we need to
		// handle empty base first.
		let r = if base_len == 0 && mod_len == 0 {
			gas_meter.charge(RuntimeCosts::Modexp(MIN_GAS_COST))?;

			BigUint::zero()
		} else {
			// read the numbers themselves.
			let mut base_buf = vec![0u8; base_len];
			read_input(input, &mut base_buf, &mut input_offset);
			let base = BigUint::from_bytes_be(&base_buf);

			let mut exp_buf = vec![0u8; exp_len];
			read_input(input, &mut exp_buf, &mut input_offset);
			let exponent = BigUint::from_bytes_be(&exp_buf);

			let mut mod_buf = vec![0u8; mod_len];
			read_input(input, &mut mod_buf, &mut input_offset);
			let modulus = BigUint::from_bytes_be(&mod_buf);

			// do our gas accounting
			let gas_cost = calculate_gas_cost(
				base_len as u64,
				mod_len as u64,
				&exponent,
				&exp_buf,
				modulus.is_even(),
			);

			gas_meter.charge(RuntimeCosts::Modexp(gas_cost))?;

			if modulus.is_zero() || modulus.is_one() {
				BigUint::zero()
			} else {
				base.modpow(&exponent, &modulus)
			}
		};

		// write output to given memory, left padded and same length as the modulus.
		let bytes = r.to_bytes_be();

		// always true except in the case of zero-length modulus, which leads to
		// output of length and value 1.
		if bytes.len() == mod_len {
			Ok(ExecReturnValue { data: bytes.to_vec(), flags: ReturnFlags::empty() })
		} else if bytes.len() < mod_len {
			let mut ret = Vec::with_capacity(mod_len);
			ret.extend(core::iter::repeat(0).take(mod_len - bytes.len()));
			ret.extend_from_slice(&bytes[..]);
			Ok(ExecReturnValue { data: ret.to_vec(), flags: ReturnFlags::empty() })
		} else {
			Err("failed")
		}
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::pure_precompiles::test::*;
	use alloy_core::hex;

	#[test]
	fn process_consensus_tests() -> Result<(), String> {
		test_precompile_test_vectors::<Modexp>(include_str!("./testdata/5-modexp_eip2565.json"))?;
		Ok(())
	}

	#[test]
	fn test_empty_input() {
		let input = Vec::new();
		let result = run_precompile::<Modexp>(input).unwrap();
		assert_eq!(result.data, Vec::<u8>::new());
	}

	#[test]
	fn test_insufficient_input() {
		let input = hex::decode(
			"0000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000001",
		)
		.expect("Decode failed");

		let result = run_precompile::<Modexp>(input).unwrap();
		assert_eq!(result.data, vec![0x00]);
	}

	#[test]
	fn test_excessive_input() {
		let input = hex::decode(
			"1000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000001",
		)
		.expect("Decode failed");

		let result = run_precompile::<Modexp>(input).unwrap_err();
		assert_eq!(result, "unreasonably large base length");
	}

	#[test]
	fn test_simple_inputs() {
		let input = hex::decode(
			"0000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000001\
			03\
			05\
			07",
		)
		.expect("Decode failed");

		// 3 ^ 5 % 7 == 5

		let precompile_result = run_precompile::<Modexp>(input).unwrap();
		assert_eq!(precompile_result.data.len(), 1); // should be same length as mod
		let result = BigUint::from_bytes_be(&precompile_result.data[..]);
		let expected = BigUint::parse_bytes(b"5", 10).unwrap();
		assert_eq!(result, expected);
	}

	#[test]
	fn test_large_inputs() {
		let input = hex::decode(
			"0000000000000000000000000000000000000000000000000000000000000020\
			0000000000000000000000000000000000000000000000000000000000000020\
			0000000000000000000000000000000000000000000000000000000000000020\
			000000000000000000000000000000000000000000000000000000000000EA5F\
			0000000000000000000000000000000000000000000000000000000000000015\
			0000000000000000000000000000000000000000000000000000000000003874",
		)
		.expect("Decode failed");

		// 59999 ^ 21 % 14452 = 10055

		let precompile_result = run_precompile::<Modexp>(input).unwrap();
		assert_eq!(precompile_result.data.len(), 32); // should be same length as mod
		let result = BigUint::from_bytes_be(&precompile_result.data[..]);
		let expected = BigUint::parse_bytes(b"10055", 10).unwrap();
		assert_eq!(result, expected);
	}

	#[test]
	fn test_large_computation() {
		let input = hex::decode(
			"0000000000000000000000000000000000000000000000000000000000000001\
			0000000000000000000000000000000000000000000000000000000000000020\
			0000000000000000000000000000000000000000000000000000000000000020\
			03\
			fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e\
			fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f",
		)
		.expect("Decode failed");

		let precompile_result = run_precompile::<Modexp>(input).unwrap();
		assert_eq!(precompile_result.data.len(), 32); // should be same length as mod
		let result = BigUint::from_bytes_be(&precompile_result.data[..]);
		let expected = BigUint::parse_bytes(b"1", 10).unwrap();
		assert_eq!(result, expected);
	}

	#[test]
	fn test_zero_exp_with_33_length() {
		// This is a regression test which ensures that the 'iteration_count' calculation
		// in 'calculate_iteration_count' cannot underflow.
		//
		// In debug mode, this underflow could cause a panic. Otherwise, it causes N**0 to
		// be calculated at more-than-normal expense.
		//
		// TODO: cite security advisory

		let input = vec![
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
		];

		let precompile_result = run_precompile::<Modexp>(input).unwrap();
		assert_eq!(precompile_result.data.len(), 1); // should be same length as mod
		let result = BigUint::from_bytes_be(&precompile_result.data[..]);
		let expected = BigUint::parse_bytes(b"0", 10).unwrap();
		assert_eq!(result, expected);
	}

	#[test]
	fn test_long_exp_gas_cost_matches_specs() {
		use crate::{gas::Token, tests::Test, GasMeter, Weight};

		let input = vec![
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			16, 0, 0, 0, 255, 255, 255, 2, 0, 0, 179, 0, 0, 2, 0, 0, 122, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 255, 251, 0, 0, 0, 0, 4, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 255, 255, 255, 2, 0, 0, 179, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255,
			255, 255, 255, 249,
		];

		let mut gas_meter = GasMeter::<Test>::new(Weight::MAX);
		Modexp::execute(&mut gas_meter, &input).unwrap();

		// 7104 * 20 gas used when ran in geth (x20)
		assert_eq!(
			gas_meter.gas_consumed(),
			Token::<Test>::weight(&RuntimeCosts::Modexp(7104 * 20))
		);
	}
}