referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Cumulus.

// Cumulus is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Cumulus is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Cumulus.  If not, see <http://www.gnu.org/licenses/>.

use codec::Decode;
use polkadot_primitives::{
	Block as PBlock, Hash as PHash, Header as PHeader, PersistedValidationData, ValidationCodeHash,
};

use cumulus_primitives_core::{relay_chain, AbridgedHostConfiguration};
use cumulus_relay_chain_interface::{RelayChainError, RelayChainInterface};

use sc_client_api::Backend;
use sc_consensus::{shared_data::SharedData, BlockImport, ImportResult};
use sp_consensus_slots::Slot;

use sp_runtime::traits::{Block as BlockT, Header as HeaderT};
use sp_timestamp::Timestamp;

use std::{sync::Arc, time::Duration};

mod level_monitor;
mod parachain_consensus;
mod parent_search;
#[cfg(test)]
mod tests;

pub use parent_search::*;

pub use parachain_consensus::run_parachain_consensus;

use level_monitor::LevelMonitor;
pub use level_monitor::{LevelLimit, MAX_LEAVES_PER_LEVEL_SENSIBLE_DEFAULT};

pub mod import_queue;

/// Provides the hash of validation code used for authoring/execution of blocks at a given
/// hash.
pub trait ValidationCodeHashProvider<Hash> {
	fn code_hash_at(&self, at: Hash) -> Option<ValidationCodeHash>;
}

impl<F, Hash> ValidationCodeHashProvider<Hash> for F
where
	F: Fn(Hash) -> Option<ValidationCodeHash>,
{
	fn code_hash_at(&self, at: Hash) -> Option<ValidationCodeHash> {
		(self)(at)
	}
}

/// The result of [`ParachainConsensus::produce_candidate`].
pub struct ParachainCandidate<B> {
	/// The block that was built for this candidate.
	pub block: B,
	/// The proof that was recorded while building the block.
	pub proof: sp_trie::StorageProof,
}

/// A specific parachain consensus implementation that can be used by a collator to produce
/// candidates.
///
/// The collator will call [`Self::produce_candidate`] every time there is a free core for the
/// parachain this collator is collating for. It is the job of the consensus implementation to
/// decide if this specific collator should build a candidate for the given relay chain block. The
/// consensus implementation could, for example, check whether this specific collator is part of a
/// staked set.
#[async_trait::async_trait]
pub trait ParachainConsensus<B: BlockT>: Send + Sync + dyn_clone::DynClone {
	/// Produce a new candidate at the given parent block and relay-parent blocks.
	///
	/// Should return `None` if the consensus implementation decided that it shouldn't build a
	/// candidate or if there occurred any error.
	///
	/// # NOTE
	///
	/// It is expected that the block is already imported when the future resolves.
	async fn produce_candidate(
		&mut self,
		parent: &B::Header,
		relay_parent: PHash,
		validation_data: &PersistedValidationData,
	) -> Option<ParachainCandidate<B>>;
}

dyn_clone::clone_trait_object!(<B> ParachainConsensus<B> where B: BlockT);

#[async_trait::async_trait]
impl<B: BlockT> ParachainConsensus<B> for Box<dyn ParachainConsensus<B> + Send + Sync> {
	async fn produce_candidate(
		&mut self,
		parent: &B::Header,
		relay_parent: PHash,
		validation_data: &PersistedValidationData,
	) -> Option<ParachainCandidate<B>> {
		(*self).produce_candidate(parent, relay_parent, validation_data).await
	}
}

/// Parachain specific block import.
///
/// Specialized block import for parachains. It supports to delay setting the best block until the
/// relay chain has included a candidate in its best block. By default the delayed best block
/// setting is disabled. The block import also monitors the imported blocks and prunes by default if
/// there are too many blocks at the same height. Too many blocks at the same height can for example
/// happen if the relay chain is rejecting the parachain blocks in the validation.
pub struct ParachainBlockImport<Block: BlockT, BI, BE> {
	inner: BI,
	monitor: Option<SharedData<LevelMonitor<Block, BE>>>,
	delayed_best_block: bool,
}

impl<Block: BlockT, BI, BE: Backend<Block>> ParachainBlockImport<Block, BI, BE> {
	/// Create a new instance.
	///
	/// The number of leaves per level limit is set to `LevelLimit::Default`.
	pub fn new(inner: BI, backend: Arc<BE>) -> Self {
		Self::new_with_limit(inner, backend, LevelLimit::Default)
	}

	/// Create a new instance with an explicit limit to the number of leaves per level.
	///
	/// This function alone doesn't enforce the limit on levels for old imported blocks,
	/// the limit is eventually enforced only when new blocks are imported.
	pub fn new_with_limit(inner: BI, backend: Arc<BE>, level_leaves_max: LevelLimit) -> Self {
		let level_limit = match level_leaves_max {
			LevelLimit::None => None,
			LevelLimit::Some(limit) => Some(limit),
			LevelLimit::Default => Some(MAX_LEAVES_PER_LEVEL_SENSIBLE_DEFAULT),
		};

		let monitor =
			level_limit.map(|level_limit| SharedData::new(LevelMonitor::new(level_limit, backend)));

		Self { inner, monitor, delayed_best_block: false }
	}

	/// Create a new instance which delays setting the best block.
	///
	/// The number of leaves per level limit is set to `LevelLimit::Default`.
	pub fn new_with_delayed_best_block(inner: BI, backend: Arc<BE>) -> Self {
		Self {
			delayed_best_block: true,
			..Self::new_with_limit(inner, backend, LevelLimit::Default)
		}
	}
}

impl<Block: BlockT, I: Clone, BE> Clone for ParachainBlockImport<Block, I, BE> {
	fn clone(&self) -> Self {
		ParachainBlockImport {
			inner: self.inner.clone(),
			monitor: self.monitor.clone(),
			delayed_best_block: self.delayed_best_block,
		}
	}
}

#[async_trait::async_trait]
impl<Block, BI, BE> BlockImport<Block> for ParachainBlockImport<Block, BI, BE>
where
	Block: BlockT,
	BI: BlockImport<Block> + Send + Sync,
	BE: Backend<Block>,
{
	type Error = BI::Error;

	async fn check_block(
		&self,
		block: sc_consensus::BlockCheckParams<Block>,
	) -> Result<sc_consensus::ImportResult, Self::Error> {
		self.inner.check_block(block).await
	}

	async fn import_block(
		&self,
		mut params: sc_consensus::BlockImportParams<Block>,
	) -> Result<sc_consensus::ImportResult, Self::Error> {
		// Blocks are stored within the backend by using POST hash.
		let hash = params.post_hash();
		let number = *params.header.number();

		if params.with_state() {
			// Force imported state finality.
			// Required for warp sync. We assume that preconditions have been
			// checked properly and we are importing a finalized block with state.
			params.finalized = true;
		}

		if self.delayed_best_block {
			// Best block is determined by the relay chain, or if we are doing the initial sync
			// we import all blocks as new best.
			params.fork_choice = Some(sc_consensus::ForkChoiceStrategy::Custom(
				params.origin == sp_consensus::BlockOrigin::NetworkInitialSync,
			));
		}

		let maybe_lock = self.monitor.as_ref().map(|monitor_lock| {
			let mut monitor = monitor_lock.shared_data_locked();
			monitor.enforce_limit(number);
			monitor.release_mutex()
		});

		let res = self.inner.import_block(params).await?;

		if let (Some(mut monitor_lock), ImportResult::Imported(_)) = (maybe_lock, &res) {
			let mut monitor = monitor_lock.upgrade();
			monitor.block_imported(number, hash);
		}

		Ok(res)
	}
}

/// Marker trait denoting a block import type that fits the parachain requirements.
pub trait ParachainBlockImportMarker {}

impl<B: BlockT, BI, BE> ParachainBlockImportMarker for ParachainBlockImport<B, BI, BE> {}

/// Get the relay-parent slot and timestamp from a header.
pub fn relay_slot_and_timestamp(
	relay_parent_header: &PHeader,
	relay_chain_slot_duration: Duration,
) -> Option<(Slot, Timestamp)> {
	sc_consensus_babe::find_pre_digest::<PBlock>(relay_parent_header)
		.map(|babe_pre_digest| {
			let slot = babe_pre_digest.slot();
			let t = Timestamp::new(relay_chain_slot_duration.as_millis() as u64 * *slot);

			(slot, t)
		})
		.ok()
}

/// Reads abridged host configuration from the relay chain storage at the given relay parent.
pub async fn load_abridged_host_configuration(
	relay_parent: PHash,
	relay_client: &impl RelayChainInterface,
) -> Result<Option<AbridgedHostConfiguration>, RelayChainError> {
	relay_client
		.get_storage_by_key(relay_parent, relay_chain::well_known_keys::ACTIVE_CONFIG)
		.await?
		.map(|bytes| {
			AbridgedHostConfiguration::decode(&mut &bytes[..])
				.map_err(RelayChainError::DeserializationError)
		})
		.transpose()
}