1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Running
//! Running this fuzzer can be done with `cargo hfuzz run fixed_point`. `honggfuzz` CLI options can
//! be used by setting `HFUZZ_RUN_ARGS`, such as `-n 4` to use 4 threads.
//!
//! # Debugging a panic
//! Once a panic is found, it can be debugged with
//! `cargo hfuzz run-debug fixed_point hfuzz_workspace/fixed_point/*.fuzz`.
//!
//! # More information
//! More information about `honggfuzz` can be found
//! [here](https://docs.rs/honggfuzz/).
use honggfuzz::fuzz;
use sp_arithmetic::{traits::Saturating, FixedI64, FixedPointNumber};
fn main() {
loop {
fuzz!(|data: (i32, i32)| {
let x: i128 = data.0.into();
let y: i128 = data.1.into();
// Check `from_rational` and division are consistent.
if y != 0 {
let f1 =
FixedI64::saturating_from_integer(x) / FixedI64::saturating_from_integer(y);
let f2 = FixedI64::saturating_from_rational(x, y);
assert_eq!(f1.into_inner(), f2.into_inner());
}
// Check `saturating_mul`.
let a = FixedI64::saturating_from_rational(2, 5);
let b = a.saturating_mul(FixedI64::saturating_from_integer(x));
let n = b.into_inner() as i128;
let m = 2i128 * x * FixedI64::accuracy() as i128 / 5i128;
assert_eq!(n, m);
// Check `saturating_mul` and division are inverse.
if x != 0 {
assert_eq!(a, b / FixedI64::saturating_from_integer(x));
}
// Check `reciprocal`.
let r = a.reciprocal().unwrap().reciprocal().unwrap();
assert_eq!(a, r);
// Check addition.
let a = FixedI64::saturating_from_integer(x);
let b = FixedI64::saturating_from_integer(y);
let c = FixedI64::saturating_from_integer(x.saturating_add(y));
assert_eq!(a.saturating_add(b), c);
// Check subtraction.
let a = FixedI64::saturating_from_integer(x);
let b = FixedI64::saturating_from_integer(y);
let c = FixedI64::saturating_from_integer(x.saturating_sub(y));
assert_eq!(a.saturating_sub(b), c);
// Check `saturating_mul_acc_int`.
let a = FixedI64::saturating_from_rational(2, 5);
let b = a.saturating_mul_acc_int(x);
let xx = FixedI64::saturating_from_integer(x);
let d = a.saturating_mul(xx).saturating_add(xx).into_inner() as i128 /
FixedI64::accuracy() as i128;
assert_eq!(b, d);
});
}
}