1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Cumulus.
// Cumulus is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Cumulus is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Cumulus. If not, see <http://www.gnu.org/licenses/>.
//! Relay chain state proof provides means for accessing part of relay chain storage for reads.
use alloc::vec::Vec;
use codec::{Decode, Encode};
use cumulus_primitives_core::{
relay_chain, AbridgedHostConfiguration, AbridgedHrmpChannel, ParaId,
};
use scale_info::TypeInfo;
use sp_runtime::traits::HashingFor;
use sp_state_machine::{Backend, TrieBackend, TrieBackendBuilder};
use sp_trie::{HashDBT, MemoryDB, StorageProof, EMPTY_PREFIX};
/// The capacity of the upward message queue of a parachain on the relay chain.
// The field order should stay the same as the data can be found in the proof to ensure both are
// have the same encoded representation.
#[derive(Clone, Encode, Decode, TypeInfo, Default)]
pub struct RelayDispatchQueueRemainingCapacity {
/// The number of additional messages that can be enqueued.
pub remaining_count: u32,
/// The total size of additional messages that can be enqueued.
pub remaining_size: u32,
}
/// A snapshot of some messaging related state of relay chain pertaining to the current parachain.
///
/// This data is essential for making sure that the parachain is aware of current resource use on
/// the relay chain and that the candidates produced for this parachain do not exceed any of these
/// limits.
#[derive(Clone, Encode, Decode, TypeInfo)]
pub struct MessagingStateSnapshot {
/// The current message queue chain head for downward message queue.
///
/// If the value is absent on the relay chain this will be set to all zeros.
pub dmq_mqc_head: relay_chain::Hash,
/// The current capacity of the upward message queue of the current parachain on the relay
/// chain.
pub relay_dispatch_queue_remaining_capacity: RelayDispatchQueueRemainingCapacity,
/// Information about all the inbound HRMP channels.
///
/// These are structured as a list of tuples. The para id in the tuple specifies the sender
/// of the channel. Obviously, the recipient is the current parachain.
///
/// The channels are sorted by the sender para id ascension.
pub ingress_channels: Vec<(ParaId, AbridgedHrmpChannel)>,
/// Information about all the outbound HRMP channels.
///
/// These are structured as a list of tuples. The para id in the tuple specifies the recipient
/// of the channel. Obviously, the sender is the current parachain.
///
/// The channels are sorted by the recipient para id ascension.
pub egress_channels: Vec<(ParaId, AbridgedHrmpChannel)>,
}
#[derive(Debug)]
pub enum Error {
/// The provided proof was created against unexpected storage root.
RootMismatch,
/// The entry cannot be read.
ReadEntry(ReadEntryErr),
/// The optional entry cannot be read.
ReadOptionalEntry(ReadEntryErr),
/// The slot cannot be extracted.
Slot(ReadEntryErr),
/// The upgrade go-ahead signal cannot be read.
UpgradeGoAhead(ReadEntryErr),
/// The upgrade restriction signal cannot be read.
UpgradeRestriction(ReadEntryErr),
/// The host configuration cannot be extracted.
Config(ReadEntryErr),
/// The DMQ MQC head cannot be extracted.
DmqMqcHead(ReadEntryErr),
/// Relay dispatch queue cannot be extracted.
RelayDispatchQueueRemainingCapacity(ReadEntryErr),
/// The hrmp ingress channel index cannot be extracted.
HrmpIngressChannelIndex(ReadEntryErr),
/// The hrmp egress channel index cannot be extracted.
HrmpEgressChannelIndex(ReadEntryErr),
/// The channel identified by the sender and receiver cannot be extracted.
HrmpChannel(ParaId, ParaId, ReadEntryErr),
/// The latest included parachain head cannot be extracted.
ParaHead(ReadEntryErr),
}
#[derive(Debug)]
pub enum ReadEntryErr {
/// The value cannot be extracted from the proof.
Proof,
/// The value cannot be decoded.
Decode,
/// The value is expected to be present on the relay chain, but it doesn't exist.
Absent,
}
/// Read an entry given by the key and try to decode it. If the value specified by the key according
/// to the proof is empty, the `fallback` value will be returned.
///
/// Returns `Err` in case the backend can't return the value under the specific key (likely due to
/// a malformed proof), in case the decoding fails, or in case where the value is empty in the relay
/// chain state and no fallback was provided.
fn read_entry<T, B>(backend: &B, key: &[u8], fallback: Option<T>) -> Result<T, ReadEntryErr>
where
T: Decode,
B: Backend<HashingFor<relay_chain::Block>>,
{
backend
.storage(key)
.map_err(|_| ReadEntryErr::Proof)?
.map(|raw_entry| T::decode(&mut &raw_entry[..]).map_err(|_| ReadEntryErr::Decode))
.transpose()?
.or(fallback)
.ok_or(ReadEntryErr::Absent)
}
/// Read an optional entry given by the key and try to decode it.
/// Returns `None` if the value specified by the key according to the proof is empty.
///
/// Returns `Err` in case the backend can't return the value under the specific key (likely due to
/// a malformed proof) or if the value couldn't be decoded.
fn read_optional_entry<T, B>(backend: &B, key: &[u8]) -> Result<Option<T>, ReadEntryErr>
where
T: Decode,
B: Backend<HashingFor<relay_chain::Block>>,
{
match read_entry(backend, key, None) {
Ok(v) => Ok(Some(v)),
Err(ReadEntryErr::Absent) => Ok(None),
Err(err) => Err(err),
}
}
/// A state proof extracted from the relay chain.
///
/// This state proof is extracted from the relay chain block we are building on top of.
pub struct RelayChainStateProof {
para_id: ParaId,
trie_backend:
TrieBackend<MemoryDB<HashingFor<relay_chain::Block>>, HashingFor<relay_chain::Block>>,
}
impl RelayChainStateProof {
/// Create a new instance of `Self`.
///
/// Returns an error if the given `relay_parent_storage_root` is not the root of the given
/// `proof`.
pub fn new(
para_id: ParaId,
relay_parent_storage_root: relay_chain::Hash,
proof: StorageProof,
) -> Result<Self, Error> {
let db = proof.into_memory_db::<HashingFor<relay_chain::Block>>();
if !db.contains(&relay_parent_storage_root, EMPTY_PREFIX) {
return Err(Error::RootMismatch)
}
let trie_backend = TrieBackendBuilder::new(db, relay_parent_storage_root).build();
Ok(Self { para_id, trie_backend })
}
/// Read the [`MessagingStateSnapshot`] from the relay chain state proof.
///
/// Returns an error if anything failed at reading or decoding.
pub fn read_messaging_state_snapshot(
&self,
host_config: &AbridgedHostConfiguration,
) -> Result<MessagingStateSnapshot, Error> {
let dmq_mqc_head: relay_chain::Hash = read_entry(
&self.trie_backend,
&relay_chain::well_known_keys::dmq_mqc_head(self.para_id),
Some(Default::default()),
)
.map_err(Error::DmqMqcHead)?;
let relay_dispatch_queue_remaining_capacity = read_optional_entry::<
RelayDispatchQueueRemainingCapacity,
_,
>(
&self.trie_backend,
&relay_chain::well_known_keys::relay_dispatch_queue_remaining_capacity(self.para_id)
.key,
);
// TODO paritytech/polkadot#6283: Remove all usages of `relay_dispatch_queue_size`
//
// When the relay chain and all parachains support
// `relay_dispatch_queue_remaining_capacity`, this code here needs to be removed and above
// needs to be changed to `read_entry` that returns an error if
// `relay_dispatch_queue_remaining_capacity` can not be found/decoded.
//
// For now we just fallback to the old dispatch queue size on `ReadEntryErr::Absent`.
// `ReadEntryErr::Decode` and `ReadEntryErr::Proof` are potentially subject to meddling
// by malicious collators, so we reject the block in those cases.
let relay_dispatch_queue_remaining_capacity = match relay_dispatch_queue_remaining_capacity
{
Ok(Some(r)) => r,
Ok(None) => {
let res = read_entry::<(u32, u32), _>(
&self.trie_backend,
#[allow(deprecated)]
&relay_chain::well_known_keys::relay_dispatch_queue_size(self.para_id),
Some((0, 0)),
)
.map_err(Error::RelayDispatchQueueRemainingCapacity)?;
let remaining_count = host_config.max_upward_queue_count.saturating_sub(res.0);
let remaining_size = host_config.max_upward_queue_size.saturating_sub(res.1);
RelayDispatchQueueRemainingCapacity { remaining_count, remaining_size }
},
Err(e) => return Err(Error::RelayDispatchQueueRemainingCapacity(e)),
};
let ingress_channel_index: Vec<ParaId> = read_entry(
&self.trie_backend,
&relay_chain::well_known_keys::hrmp_ingress_channel_index(self.para_id),
Some(Vec::new()),
)
.map_err(Error::HrmpIngressChannelIndex)?;
let egress_channel_index: Vec<ParaId> = read_entry(
&self.trie_backend,
&relay_chain::well_known_keys::hrmp_egress_channel_index(self.para_id),
Some(Vec::new()),
)
.map_err(Error::HrmpEgressChannelIndex)?;
let mut ingress_channels = Vec::with_capacity(ingress_channel_index.len());
for sender in ingress_channel_index {
let channel_id = relay_chain::HrmpChannelId { sender, recipient: self.para_id };
let hrmp_channel: AbridgedHrmpChannel = read_entry(
&self.trie_backend,
&relay_chain::well_known_keys::hrmp_channels(channel_id),
None,
)
.map_err(|read_err| Error::HrmpChannel(sender, self.para_id, read_err))?;
ingress_channels.push((sender, hrmp_channel));
}
let mut egress_channels = Vec::with_capacity(egress_channel_index.len());
for recipient in egress_channel_index {
let channel_id = relay_chain::HrmpChannelId { sender: self.para_id, recipient };
let hrmp_channel: AbridgedHrmpChannel = read_entry(
&self.trie_backend,
&relay_chain::well_known_keys::hrmp_channels(channel_id),
None,
)
.map_err(|read_err| Error::HrmpChannel(self.para_id, recipient, read_err))?;
egress_channels.push((recipient, hrmp_channel));
}
// NOTE that ingress_channels and egress_channels promise to be sorted. We satisfy this
// property by relying on the fact that `ingress_channel_index` and `egress_channel_index`
// are themselves sorted.
Ok(MessagingStateSnapshot {
dmq_mqc_head,
relay_dispatch_queue_remaining_capacity,
ingress_channels,
egress_channels,
})
}
/// Read the [`AbridgedHostConfiguration`] from the relay chain state proof.
///
/// Returns an error if anything failed at reading or decoding.
pub fn read_abridged_host_configuration(&self) -> Result<AbridgedHostConfiguration, Error> {
read_entry(&self.trie_backend, relay_chain::well_known_keys::ACTIVE_CONFIG, None)
.map_err(Error::Config)
}
/// Read latest included parachain [head data](`relay_chain::HeadData`) from the relay chain
/// state proof.
///
/// Returns an error if anything failed at reading or decoding.
pub fn read_included_para_head(&self) -> Result<relay_chain::HeadData, Error> {
read_entry(&self.trie_backend, &relay_chain::well_known_keys::para_head(self.para_id), None)
.map_err(Error::ParaHead)
}
/// Read the [`Slot`](relay_chain::Slot) from the relay chain state proof.
///
/// The slot is slot of the relay chain block this state proof was extracted from.
///
/// Returns an error if anything failed at reading or decoding.
pub fn read_slot(&self) -> Result<relay_chain::Slot, Error> {
read_entry(&self.trie_backend, relay_chain::well_known_keys::CURRENT_SLOT, None)
.map_err(Error::Slot)
}
/// Read the go-ahead signal for the upgrade from the relay chain state proof.
///
/// The go-ahead specifies whether the parachain can apply the upgrade or should abort it. If
/// the value is absent then there is either no judgment by the relay chain yet or no upgrade
/// is pending.
///
/// Returns an error if anything failed at reading or decoding.
pub fn read_upgrade_go_ahead_signal(
&self,
) -> Result<Option<relay_chain::UpgradeGoAhead>, Error> {
read_optional_entry(
&self.trie_backend,
&relay_chain::well_known_keys::upgrade_go_ahead_signal(self.para_id),
)
.map_err(Error::UpgradeGoAhead)
}
/// Read the upgrade restriction signal for the upgrade from the relay chain state proof.
///
/// If the upgrade restriction is not `None`, then the parachain cannot signal an upgrade at
/// this block.
///
/// Returns an error if anything failed at reading or decoding.
pub fn read_upgrade_restriction_signal(
&self,
) -> Result<Option<relay_chain::UpgradeRestriction>, Error> {
read_optional_entry(
&self.trie_backend,
&relay_chain::well_known_keys::upgrade_restriction_signal(self.para_id),
)
.map_err(Error::UpgradeRestriction)
}
/// Read an entry given by the key and try to decode it. If the value specified by the key
/// according to the proof is empty, the `fallback` value will be returned.
///
/// Returns `Err` in case the backend can't return the value under the specific key (likely due
/// to a malformed proof), in case the decoding fails, or in case where the value is empty in
/// the relay chain state and no fallback was provided.
pub fn read_entry<T>(&self, key: &[u8], fallback: Option<T>) -> Result<T, Error>
where
T: Decode,
{
read_entry(&self.trie_backend, key, fallback).map_err(Error::ReadEntry)
}
/// Read an optional entry given by the key and try to decode it.
///
/// Returns `Err` in case the backend can't return the value under the specific key (likely due
/// to a malformed proof) or if the value couldn't be decoded.
pub fn read_optional_entry<T>(&self, key: &[u8]) -> Result<Option<T>, Error>
where
T: Decode,
{
read_optional_entry(&self.trie_backend, key).map_err(Error::ReadOptionalEntry)
}
}