1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implements functions and interfaces to check solutions for being t-PJR.
//!
//! PJR stands for proportional justified representation. PJR is an absolute measure to make
//! sure an NPoS solution adheres to a minimum standard.
//!
//! See [`pjr_check`] which is the main entry point of the module.
use crate::{
Candidate, CandidatePtr, Edge, ExtendedBalance, IdentifierT, Support, SupportMap, Supports,
VoteWeight, Voter,
};
use alloc::{collections::btree_map::BTreeMap, rc::Rc, vec::Vec};
use sp_arithmetic::{traits::Zero, Perbill};
/// The type used as the threshold.
///
/// Just some reading sugar; Must always be same as [`ExtendedBalance`];
type Threshold = ExtendedBalance;
/// Compute the threshold corresponding to the standard PJR property
///
/// `t-PJR` checks can check PJR according to an arbitrary threshold. The threshold can be any
/// value, but the property gets stronger as the threshold gets smaller. The strongest possible
/// `t-PJR` property corresponds to `t == 0`.
///
/// However, standard PJR is less stringent than that. This function returns the threshold whose
/// strength corresponds to the standard PJR property.
///
/// - `committee_size` is the number of winners of the election.
/// - `weights` is an iterator of voter stakes. If the sum of stakes is already known,
/// `std::iter::once(sum_of_stakes)` is appropriate here.
pub fn standard_threshold(
committee_size: usize,
weights: impl IntoIterator<Item = ExtendedBalance>,
) -> Threshold {
weights
.into_iter()
.fold(Threshold::zero(), |acc, elem| acc.saturating_add(elem)) /
committee_size.max(1) as Threshold
}
/// Check a solution to be PJR.
///
/// The PJR property is true if `t-PJR` is true when `t == sum(stake) / committee_size`.
pub fn pjr_check<AccountId: IdentifierT>(
supports: &Supports<AccountId>,
all_candidates: Vec<AccountId>,
all_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
) -> Result<(), AccountId> {
let t = standard_threshold(
supports.len(),
all_voters.iter().map(|voter| voter.1 as ExtendedBalance),
);
t_pjr_check(supports, all_candidates, all_voters, t)
}
/// Check a solution to be t-PJR.
///
/// ### Semantics
///
/// The t-PJR property is defined in the paper ["Validator Election in Nominated
/// Proof-of-Stake"][NPoS], section 5, definition 1.
///
/// In plain language, the t-PJR condition is: if there is a group of `N` voters
/// who have `r` common candidates and can afford to support each of them with backing stake `t`
/// (i.e `sum(stake(v) for v in voters) == r * t`), then this committee needs to be represented by
/// at least `r` elected candidates.
///
/// Section 5 of the NPoS paper shows that this property can be tested by: for a feasible solution,
/// if `Max {score(c)} < t` where c is every unelected candidate, then this solution is t-PJR. There
/// may exist edge cases which satisfy the formal definition of t-PJR but do not pass this test, but
/// those should be rare enough that we can discount them.
///
/// ### Interface
///
/// In addition to data that can be computed from the [`Supports`] struct, a PJR check also
/// needs to inspect un-elected candidates and edges, thus `all_candidates` and `all_voters`.
///
/// [NPoS]: https://arxiv.org/pdf/2004.12990v1.pdf
// ### Implementation Notes
//
// The paper uses mathematical notation, which priorities single-symbol names. For programmer ease,
// we map these to more descriptive names as follows:
//
// C => all_candidates
// N => all_voters
// (A, w) => (candidates, voters)
//
// Note that while the names don't explicitly say so, `candidates` are the winning candidates, and
// `voters` is the set of weighted edges from nominators to winning validators.
pub fn t_pjr_check<AccountId: IdentifierT>(
supports: &Supports<AccountId>,
all_candidates: Vec<AccountId>,
all_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
t: Threshold,
) -> Result<(), AccountId> {
// First order of business: derive `(candidates, voters)` from `supports`.
let (candidates, voters) = prepare_pjr_input(supports, all_candidates, all_voters);
// compute with threshold t.
pjr_check_core(candidates.as_ref(), voters.as_ref(), t)
}
/// The internal implementation of the PJR check after having the data converted.
///
/// [`pjr_check`] or [`t_pjr_check`] are typically easier to work with.
///
/// This function returns an `AccountId` in the `Err` case. This is the counter_example: the ID of
/// the unelected candidate with the highest prescore, such that `pre_score(counter_example) >= t`.
pub fn pjr_check_core<AccountId: IdentifierT>(
candidates: &[CandidatePtr<AccountId>],
voters: &[Voter<AccountId>],
t: Threshold,
) -> Result<(), AccountId> {
let unelected = candidates.iter().filter(|c| !c.borrow().elected);
let maybe_max_pre_score = unelected
.map(|c| (pre_score(Rc::clone(c), voters, t), c.borrow().who.clone()))
.max();
// if unelected is empty then the solution is indeed PJR.
match maybe_max_pre_score {
Some((max_pre_score, counter_example)) if max_pre_score >= t => Err(counter_example),
_ => Ok(()),
}
}
/// Validate a challenge to an election result.
///
/// A challenge to an election result is valid if there exists some counter_example for which
/// `pre_score(counter_example) >= threshold`. Validating an existing counter_example is
/// computationally cheaper than re-running the PJR check.
///
/// This function uses the standard threshold.
///
/// Returns `true` if the challenge is valid: the proposed solution does not satisfy PJR.
/// Returns `false` if the challenge is invalid: the proposed solution does in fact satisfy PJR.
pub fn validate_pjr_challenge<AccountId: IdentifierT>(
counter_example: AccountId,
supports: &Supports<AccountId>,
all_candidates: Vec<AccountId>,
all_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
) -> bool {
let threshold = standard_threshold(
supports.len(),
all_voters.iter().map(|voter| voter.1 as ExtendedBalance),
);
validate_t_pjr_challenge(counter_example, supports, all_candidates, all_voters, threshold)
}
/// Validate a challenge to an election result.
///
/// A challenge to an election result is valid if there exists some counter_example for which
/// `pre_score(counter_example) >= threshold`. Validating an existing counter_example is
/// computationally cheaper than re-running the PJR check.
///
/// This function uses a supplied threshold.
///
/// Returns `true` if the challenge is valid: the proposed solution does not satisfy PJR.
/// Returns `false` if the challenge is invalid: the proposed solution does in fact satisfy PJR.
pub fn validate_t_pjr_challenge<AccountId: IdentifierT>(
counter_example: AccountId,
supports: &Supports<AccountId>,
all_candidates: Vec<AccountId>,
all_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
threshold: Threshold,
) -> bool {
let (candidates, voters) = prepare_pjr_input(supports, all_candidates, all_voters);
validate_pjr_challenge_core(counter_example, &candidates, &voters, threshold)
}
/// Validate a challenge to an election result.
///
/// A challenge to an election result is valid if there exists some counter_example for which
/// `pre_score(counter_example) >= threshold`. Validating an existing counter_example is
/// computationally cheaper than re-running the PJR check.
///
/// Returns `true` if the challenge is valid: the proposed solution does not satisfy PJR.
/// Returns `false` if the challenge is invalid: the proposed solution does in fact satisfy PJR.
fn validate_pjr_challenge_core<AccountId: IdentifierT>(
counter_example: AccountId,
candidates: &[CandidatePtr<AccountId>],
voters: &[Voter<AccountId>],
threshold: Threshold,
) -> bool {
// Performing a linear search of the candidate list is not great, for obvious reasons. However,
// the alternatives are worse:
//
// - we could pre-sort the candidates list in `prepare_pjr_input` (n log n) which would let us
// binary search for the appropriate one here (log n). Overall runtime is `n log n` which is
// worse than the current runtime of `n`.
//
// - we could probably pre-sort the candidates list in `n` in `prepare_pjr_input` using some
// unsafe code leveraging the existing `candidates_index`: allocate an uninitialized vector of
// appropriate length, then copy in all the elements. We'd really prefer to avoid unsafe code
// in the runtime, though.
let candidate =
match candidates.iter().find(|candidate| candidate.borrow().who == counter_example) {
None => return false,
Some(candidate) => candidate.clone(),
};
pre_score(candidate, voters, threshold) >= threshold
}
/// Convert the data types that the user runtime has into ones that can be used by this module.
///
/// It is expected that this function's interface might change over time, or multiple variants of it
/// can be provided for different use cases.
///
/// The ultimate goal, in any case, is to convert the election data into [`Candidate`] and [`Voter`]
/// types defined by this crate, whilst setting correct value for some of their fields, namely:
/// 1. Candidate [`backing_stake`](Candidate::backing_stake) and [`elected`](Candidate::elected) if
/// they are a winner. 2. Voter edge [`weight`](Edge::weight) if they are backing a winner.
/// 3. Voter [`budget`](Voter::budget).
///
/// None of the `load` or `score` values are used and can be ignored. This is similar to
/// [`setup_inputs`] function of this crate.
///
/// ### Performance (Weight) Notes
///
/// Note that the current function is rather unfortunately inefficient. The most significant
/// slowdown is the fact that a typical solution that need to be checked for PJR only contains a
/// subset of the entire NPoS edge graph, encoded as `supports`. This only encodes the
/// edges that actually contribute to a winner's backing stake and ignores the rest to save space.
/// To check PJR, we need the entire voter set, including those edges that point to non-winners.
/// This could cause the caller runtime to have to read the entire list of voters, which is assumed
/// to be expensive.
///
/// A sensible user of this module should make sure that the PJR check is executed and checked as
/// little as possible, and take sufficient economical measures to ensure that this function cannot
/// be abused.
fn prepare_pjr_input<AccountId: IdentifierT>(
supports: &Supports<AccountId>,
all_candidates: Vec<AccountId>,
all_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
) -> (Vec<CandidatePtr<AccountId>>, Vec<Voter<AccountId>>) {
let mut candidates_index: BTreeMap<AccountId, usize> = BTreeMap::new();
// dump the staked assignments in a voter-major map for faster access down the road.
let mut assignment_map: BTreeMap<AccountId, Vec<(AccountId, ExtendedBalance)>> =
BTreeMap::new();
for (winner_id, Support { voters, .. }) in supports.iter() {
for (voter_id, support) in voters.iter() {
assignment_map
.entry(voter_id.clone())
.or_default()
.push((winner_id.clone(), *support));
}
}
// Convert Supports into a SupportMap
//
// As a flat list, we're limited to linear search. That gives the production of `candidates`,
// below, a complexity of `O(s*c)`, where `s == supports.len()` and `c == all_candidates.len()`.
// For large lists, that's pretty bad.
//
// A `SupportMap`, as a `BTreeMap`, has access timing of `O(lg n)`. This means that constructing
// the map and then indexing from it gives us timing of `O((s + c) * lg(s))`. If in the future
// we get access to a deterministic `HashMap`, we can further improve that to `O(s+c)`.
//
// However, it does mean allocating sufficient space to store all the data again.
let supports: SupportMap<AccountId> = supports.iter().cloned().collect();
// collect all candidates and winners into a unified `Vec<CandidatePtr>`.
let candidates = all_candidates
.into_iter()
.enumerate()
.map(|(i, c)| {
candidates_index.insert(c.clone(), i);
// set the backing value and elected flag if the candidate is among the winners.
let who = c;
let maybe_support = supports.get(&who);
let elected = maybe_support.is_some();
let backed_stake = maybe_support.map(|support| support.total).unwrap_or_default();
Candidate {
who,
elected,
backed_stake,
score: Default::default(),
approval_stake: Default::default(),
round: Default::default(),
}
.to_ptr()
})
.collect::<Vec<_>>();
// collect all voters into a unified Vec<Voters>.
let voters = all_voters
.into_iter()
.map(|(v, w, ts)| {
let mut edges: Vec<Edge<AccountId>> = Vec::with_capacity(ts.len());
for t in ts {
if edges.iter().any(|e| e.who == t) {
// duplicate edge.
continue
}
if let Some(idx) = candidates_index.get(&t) {
// if this edge is among the assignments, set the weight as well.
let weight = assignment_map
.get(&v)
.and_then(|d| {
d.iter().find_map(|(x, y)| if x == &t { Some(y) } else { None })
})
.cloned()
.unwrap_or_default();
edges.push(Edge {
who: t,
candidate: Rc::clone(&candidates[*idx]),
weight,
load: Default::default(),
});
}
}
let who = v;
let budget: ExtendedBalance = w.into();
Voter { who, budget, edges, load: Default::default() }
})
.collect::<Vec<_>>();
(candidates, voters)
}
/// The pre-score of an unelected candidate.
///
/// This is the amount of stake that *all voter* can spare to devote to this candidate without
/// allowing the backing stake of any other elected candidate to fall below `t`.
///
/// In essence, it is the sum(slack(n, t)) for all `n` who vote for `unelected`.
fn pre_score<AccountId: IdentifierT>(
unelected: CandidatePtr<AccountId>,
voters: &[Voter<AccountId>],
t: Threshold,
) -> ExtendedBalance {
debug_assert!(!unelected.borrow().elected);
voters
.iter()
.filter(|v| v.votes_for(&unelected.borrow().who))
.fold(Zero::zero(), |acc: ExtendedBalance, voter| acc.saturating_add(slack(voter, t)))
}
/// The slack of a voter at a given state.
///
/// The slack of each voter, with threshold `t` is the total amount of stake that this voter can
/// spare to a new potential member, whilst not dropping the backing stake of any of its currently
/// active members below `t`. In essence, for each of the current active candidates `c`, we assume
/// that we reduce the edge weight of `voter` to `c` from `w` to `w * min(1 / (t / support(c)))`.
///
/// More accurately:
///
/// 1. If `c` exactly has `t` backing or less, then we don't generate any slack.
/// 2. If `c` has more than `t`, then we reduce it to `t`.
fn slack<AccountId: IdentifierT>(voter: &Voter<AccountId>, t: Threshold) -> ExtendedBalance {
let budget = voter.budget;
let leftover = voter.edges.iter().fold(Zero::zero(), |acc: ExtendedBalance, edge| {
let candidate = edge.candidate.borrow();
if candidate.elected {
let extra =
Perbill::one().min(Perbill::from_rational(t, candidate.backed_stake)) * edge.weight;
acc.saturating_add(extra)
} else {
// No slack generated here.
acc
}
});
// NOTE: candidate for saturating_log_sub(). Defensive-only.
budget.saturating_sub(leftover)
}
#[cfg(test)]
mod tests {
use super::*;
fn setup_voter(who: u32, votes: Vec<(u32, u128, bool)>) -> Voter<u32> {
let mut voter = Voter::new(who);
let mut budget = 0u128;
let candidates = votes
.into_iter()
.map(|(t, w, e)| {
budget += w;
Candidate {
who: t,
elected: e,
backed_stake: w,
score: Default::default(),
approval_stake: Default::default(),
round: Default::default(),
}
})
.collect::<Vec<_>>();
let edges = candidates
.into_iter()
.map(|c| Edge {
who: c.who,
weight: c.backed_stake,
candidate: c.to_ptr(),
load: Default::default(),
})
.collect::<Vec<_>>();
voter.edges = edges;
voter.budget = budget;
voter
}
fn assert_core_failure<AccountId: IdentifierT>(
candidates: &[CandidatePtr<AccountId>],
voters: &[Voter<AccountId>],
t: Threshold,
) {
let counter_example = pjr_check_core(candidates, voters, t).unwrap_err();
assert!(validate_pjr_challenge_core(counter_example, candidates, voters, t));
}
#[test]
fn slack_works() {
let voter = setup_voter(10, vec![(1, 10, true), (2, 20, true)]);
assert_eq!(slack(&voter, 15), 5);
assert_eq!(slack(&voter, 17), 3);
assert_eq!(slack(&voter, 10), 10);
assert_eq!(slack(&voter, 5), 20);
}
#[test]
fn pre_score_works() {
// will give 5 slack
let v1 = setup_voter(10, vec![(1, 10, true), (2, 20, true), (3, 0, false)]);
// will give no slack
let v2 = setup_voter(20, vec![(1, 5, true), (2, 5, true)]);
// will give 10 slack.
let v3 = setup_voter(30, vec![(1, 20, true), (2, 20, true), (3, 0, false)]);
let unelected = Candidate {
who: 3u32,
elected: false,
score: Default::default(),
approval_stake: Default::default(),
backed_stake: Default::default(),
round: Default::default(),
}
.to_ptr();
let score = pre_score(unelected, &vec![v1, v2, v3], 15);
assert_eq!(score, 15);
}
#[test]
fn can_convert_data_from_external_api() {
let all_candidates = vec![10, 20, 30, 40];
let all_voters = vec![
(1, 10, vec![10, 20, 30, 40]),
(2, 20, vec![10, 20, 30, 40]),
(3, 30, vec![10, 30]),
];
// tuples in voters vector are (AccountId, Balance)
let supports: Supports<u32> = vec![
(20, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
(40, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
];
let (candidates, voters) = prepare_pjr_input(&supports, all_candidates, all_voters);
// elected flag and backing must be set correctly
assert_eq!(
candidates
.iter()
.map(|c| (c.borrow().who, c.borrow().elected, c.borrow().backed_stake))
.collect::<Vec<_>>(),
vec![(10, false, 0), (20, true, 15), (30, false, 0), (40, true, 15)],
);
// edge weight must be set correctly
assert_eq!(
voters
.iter()
.map(|v| (
v.who,
v.budget,
v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>(),
))
.collect::<Vec<_>>(),
vec![
(1, 10, vec![(10, 0), (20, 5), (30, 0), (40, 5)]),
(2, 20, vec![(10, 0), (20, 10), (30, 0), (40, 10)]),
(3, 30, vec![(10, 0), (30, 0)]),
],
);
// fyi. this is not PJR, obviously because the votes of 3 can bump the stake a lot but they
// are being ignored.
assert_core_failure(&candidates, &voters, 1);
assert_core_failure(&candidates, &voters, 10);
assert_core_failure(&candidates, &voters, 20);
}
// These next tests ensure that the threshold phase change property holds for us, but that's not
// their real purpose. They were written to help develop an intuition about what the threshold
// value actually means in layman's terms.
//
// The results tend to support the intuition that the threshold is the voting power at and below
// which a voter's preferences can simply be ignored.
#[test]
fn find_upper_bound_for_threshold_scenario_1() {
let all_candidates = vec![10, 20, 30, 40];
let all_voters = vec![
(1, 10, vec![10, 20, 30, 40]),
(2, 20, vec![10, 20, 30, 40]),
(3, 30, vec![10, 30]),
];
// tuples in voters vector are (AccountId, Balance)
let supports: Supports<u32> = vec![
(20, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
(40, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
];
let (candidates, voters) = prepare_pjr_input(&supports, all_candidates, all_voters);
find_threshold_phase_change_for_scenario(candidates, voters);
}
#[test]
fn find_upper_bound_for_threshold_scenario_2() {
let all_candidates = vec![10, 20, 30, 40];
let all_voters = vec![
(1, 10, vec![10, 20, 30, 40]),
(2, 20, vec![10, 20, 30, 40]),
(3, 25, vec![10, 30]),
];
// tuples in voters vector are (AccountId, Balance)
let supports: Supports<u32> = vec![
(20, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
(40, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
];
let (candidates, voters) = prepare_pjr_input(&supports, all_candidates, all_voters);
find_threshold_phase_change_for_scenario(candidates, voters);
}
#[test]
fn find_upper_bound_for_threshold_scenario_3() {
let all_candidates = vec![10, 20, 30, 40];
let all_voters = vec![
(1, 10, vec![10, 20, 30, 40]),
(2, 20, vec![10, 20, 30, 40]),
(3, 35, vec![10, 30]),
];
// tuples in voters vector are (AccountId, Balance)
let supports: Supports<u32> = vec![
(20, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
(40, Support { total: 15, voters: vec![(1, 5), (2, 10)] }),
];
let (candidates, voters) = prepare_pjr_input(&supports, all_candidates, all_voters);
find_threshold_phase_change_for_scenario(candidates, voters);
}
fn find_threshold_phase_change_for_scenario<AccountId: IdentifierT>(
candidates: Vec<CandidatePtr<AccountId>>,
voters: Vec<Voter<AccountId>>,
) -> Threshold {
let mut threshold = 1;
let mut prev_threshold = 0;
// find the binary range containing the threshold beyond which the PJR check succeeds
while pjr_check_core(&candidates, &voters, threshold).is_err() {
prev_threshold = threshold;
threshold = threshold
.checked_mul(2)
.expect("pjr check must fail before we run out of capacity in u128");
}
// now binary search within that range to find the phase threshold
let mut high_bound = threshold;
let mut low_bound = prev_threshold;
while high_bound - low_bound > 1 {
// maintain the invariant that low_bound fails and high_bound passes
let test = low_bound + ((high_bound - low_bound) / 2);
if pjr_check_core(&candidates, &voters, test).is_ok() {
high_bound = test;
} else {
low_bound = test;
}
}
println!("highest failing check: {}", low_bound);
println!("lowest succeeding check: {}", high_bound);
// for a value to be a threshold, it must be the boundary between two conditions
let mut unexpected_failures = Vec::new();
let mut unexpected_successes = Vec::new();
for t in 0..=low_bound {
if pjr_check_core(&candidates, &voters, t).is_ok() {
unexpected_successes.push(t);
}
}
for t in high_bound..(high_bound * 2) {
if pjr_check_core(&candidates, &voters, t).is_err() {
unexpected_failures.push(t);
}
}
dbg!(&unexpected_successes, &unexpected_failures);
assert!(unexpected_failures.is_empty() && unexpected_successes.is_empty());
high_bound
}
}